深度学习
文章平均质量分 75
人工智能小a
这个作者很懒,什么都没留下…
展开
-
深度强化学习DQN网络
DQN网络原创 2022-01-29 14:57:10 · 5627 阅读 · 0 评论 -
神经网络前向反向传播
神经网络前向反向传播前向传播输入: a[L−1]a^{[L-1]}a[L−1]输出:a[L]a^[L]a[L]、z[L]z^{[L]}z[L]传播过程:Z[L]=W[L]∗A[L−1]+b[L]Z^{[L]}=W^{[L]}*A^{[L-1]}+b^{[L]}Z[L]=W[L]∗A[L−1]+b[L]A[L]=g[L](Z[L])A^{[L]}=g^{[L]}(Z^{[L]})A[L]=g[L](Z[L])反向传播输入:da[1]da^{[1]}da[1]输出:da[L−1]da原创 2021-11-23 09:09:14 · 536 阅读 · 0 评论 -
神经网络中的矩阵维度
多层神经网络单样本神经网络第一层:Z[1]=W[1]∗X+b[1]Z^{[1]}=W^{[1]}*X+b^{[1]}Z[1]=W[1]∗X+b[1]各矩阵维度:Z[1]:(n[1],1):(3,1)X:(n[0],1):(2,1)W[1]:(n[1],n[0]):(3,2)b[1]:(n[1],1):(3,1)Z^{[1]}: (n^{[1]},1):(3,1)\\X:(n^{[0]},1):(2,1)\\W^{[1]}:(n^{[1]},n^{[0]}):(3,2)\\b^{[1原创 2021-11-22 10:07:25 · 1341 阅读 · 0 评论 -
神经网络向量化
神经网络向量化多层神经网络是由单层神经网络叠加而成的,所以形成了成的概念,常见的多层神经网络由如下结构:输入层(Input Layer):由众多神经元(Neuron)组成,用来接收输入信息,输入的信息成为输入向量输出层(Output Layer):信息通过神经元链接传输、分析、权衡,形成输出结果,输出的信息称为输出向量隐藏层(Hidden Layer):简称:“隐层”,是输入层和输出层之间众多神经元和链接组成的各层,隐层可以有一层或者多层,隐层的结点(神经元)数目不定,数目越多神经网络的非线性越显原创 2021-11-20 17:09:18 · 1437 阅读 · 0 评论 -
模块化搭建神经网络(Keras)
模块化搭建神经网络(keras)搭建步骤import :导入相关模块train、test:指定训练数据集的输入特征x_train和训练集的输入标签y_train,测试集的输入特征x_test和测试集的输入标签y_testmodel = tf.keras.models.Sequential:搭建网络结构,定义前向传播model.compile:配置训练参数,定义优化器、损失函数、评测指标等model.fit:执行训练过程,输入训练集和测试集的输入特征及标签,定义Batch值和数据集训练原创 2021-11-10 09:11:10 · 462 阅读 · 0 评论 -
tensorflow学习记录
tensorflow张量的创建创建张量//格式tf.constant(张量内容, dtype=数据类型(可选))//示例tf.constant([1,5], dtype=tf.int64)数据转换//格式tf.convert_to_tensor(数据名, dtype=数据类型(可选))//示例a = np.arange(0, 5)b =tf.convert_to_tensor(a, dtype=tf.int64)特殊张量//创建全0张量tf.zeros(维度)//创建全原创 2021-11-02 09:22:58 · 101 阅读 · 0 评论 -
神经网络参数优化器
神经网络参数优化器符号及含义w:待优化参数loss:损失函数lr:学习率batch:一次迭代数量的多少t:当前迭代的总系数迭代步骤(1) 计算 t 时刻损失函数关于当前参数的梯度:gtg_tgt原创 2021-10-31 21:41:04 · 466 阅读 · 0 评论 -
机器学习模型评价指标(准确率、精度、召回率)
模型评价指标(准确率、精度、召回率)机器学习中我们常常使用准确率、精度、召回率三大指标评价一个模型训练的好坏,那么这三大参数分别代表什么意义?在介绍评价指标前,需要先明确几个计算指标:真正例(True Positive,TP):模型将测试样本中True类型的样本预测为True的样本数量假负例(False Negative,FN):模型将测试样本中True类型的样本预测为False的样本数量假正例(False Positive,FP):模型将测试样本中False类型的样本预测为True的样本数量原创 2021-10-19 21:57:41 · 7867 阅读 · 0 评论 -
神经网络学习记录(模型保存、准确率计算、断点续训)
神经网络学习模型保存当我们搭建好神经网络的学习过程,传入训练数据进行训练,那么如何将训练完成的模型保存以备之后预测时直接使用呢?因此,在神经网络的训练框架中我们还需要定义模型的保存模块,使用tensorflow实现程序如下:saver = tf.train.Saaver()with tf.Session() as sess: for i in range(STEPS): if i%轮数 == 0: //定义一定轮数保存模型 saver.save(sess, os.path.join(MO原创 2021-10-12 10:42:19 · 1250 阅读 · 0 评论 -
神经网络学习记录(学习率、滑动平均、正则化)
神经网络优化学习率(learning_rate)学习率表示的是神经网络参数更新的幅度:Wn+1=Wn−learning_rate∗▽Wn+1 = Wn - learning\_rate*▽Wn+1=Wn−learning_rate∗▽其中,Wn+1表示更新后的参数,Wn表示当前参数,learning_rate即定义的学习率值,▽表示损失函数的梯度(导数)。学习率在某种程度上代表了神经网络训练中信息学习的速度,学习率如果定义过大则神经网络将振荡不收敛,过小则收敛速度慢,如下图所示:在实际神经原创 2021-10-12 10:29:54 · 994 阅读 · 0 评论 -
模块化搭建神经网络
搭建神经网络(构造数据集、前向传播、反向传播)前向传播前向传播搭建神经网络,设计整体网络结构,创建forward.py://定义神经网络结构def forward(x,regularizer): //传入参数:x:输入,regularizer:正则化权重 w= //定义权重参数 b= //定义偏置参数 y= //定义输出 return y//初始化权重参数def get_weight(shape,regulerizer): w = tf.Variable() tf.add_to_co原创 2021-10-07 09:32:43 · 343 阅读 · 0 评论 -
搭建神经网络(Tensorflow)
搭建神经网络准备准备阶段包括常量定义、构建输入数据集等。import tensorflow as tfimport numpy as npBATCH_SIZE = 8seed = 23455//构造输入数据rng = np.random.RandomState(seed)X = rng.rand(32,2)Y = [[int(x0 + x1 < 1)] for (x0,x1) in X]print(X)print(Y)前向传播定义输入、参数和输出等。//定义神经网络的原创 2021-10-05 15:14:32 · 199 阅读 · 0 评论 -
神经网络学习记录(张量)
神经网络知识点记录张量定义: 张量(Tensor)是一个定义在一些向量空间和一些对偶空间的笛卡尔积上的多重线性映射,其坐标是|n|维空间内,有|n|个分量的一种量, 其中每个分量都是坐标的函数, 而在坐标变换时,这些分量也依照某些规则作线性变换。r 称为该张量的秩或阶(与矩阵的秩和阶均无关系)。通俗理解: 张量实际上是不同维度数组的总称,如:0阶张量表示的是一个标量,1阶张量表示的是一个向量,2阶张量表示的是一个矩阵等。标量(Scalar):标量是一个独立存在的数,比如在线性代数中一个实数 5 就原创 2021-09-26 13:11:32 · 251 阅读 · 0 评论 -
神经网络学习记录(深度学习)
神经网络学习人工神经网络人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。神经元的概念神经元是神经网络中最基本的结构,也可以说是神经网络的基本单元,它的设计灵感完全来源于生物学上神经元的信息传播机制。我们学过生物的同学都知道,神原创 2021-09-20 14:34:27 · 531 阅读 · 0 评论