- 博客(9)
- 资源 (15)
- 收藏
- 关注
原创 Caffe2源码理解系列之IO
Caffe2 IO本文主要记录下我对Caffe2的输入输出部分源代码的理解。数据是以什么样的形式输入进网络的,训练过程中如何保存网络模型。与数据输入相关的Operator是DBReader, ImageInputOp, 与存储训练过程中保存模型相关信息的是SaveOp, LoadOp,以及一系列与序列化相关的工具类,比如BlobSerializer。下面分别介绍一下,如有理解错误,欢迎指出。P
2017-11-15 15:11:43 2736
原创 Caffe2源码理解系列之存储
Caffe2存储Caffe2中的存储结构层次从上到下依次是Workspace, Blob, Tensor。Workspace存储了运行时所有的Blob和实例化的Net。Blob可以视为对任意类型的一个封装的类,比如封装Tensor, float, string等等。Tensor就是一个多维数组,这个Tensor就类似于Caffe1中的Blob。
2017-11-13 18:20:48 2721
原创 Caffe在Cifar10上复现ResNet
Caffe在Cifar10上复现ResNetResNet在2015年的ImageNet竞赛上的识别率达到了非常高的水平,这里我将使用Caffe在Cifar10上复现论文4.2节的Cifar实验。ResNet的基本模块Caffe实现Cifar10上的实验结果及说明ResNet的基本模块本文参照Torch7在Cifar10上复现ResNet的实验,使用Caffe复现之。ResNet的基本模块可以
2016-05-26 17:14:17 29214 22
原创 使用Caffe尝试DeepID
使用Caffe复现DeepID实验本实验使用Casia-Webface part2的切图来复现DeepID实验结果。DeepID网络配置文件训练验证数据组织实验结果结果分析DeepID网络配置文件-下面给出deepId_train_test.prototxt的内容name: "deepID_network"layer { name: "input_data" top: "data
2015-12-17 00:23:45 21751 145
原创 《Deep Learning Face Representaion from Predicting 10000 Classes》读书报告
1、基本思想训练多个深度卷积神经网络(deep ConvNets)对输入的人脸块(face patches)进行特征提取,然后训练每一个卷积神经网络(以下简称为ConvNet)的目标是对输入的face patch进行分类,这一步是有监督的训练,即每一个face patch对应于一个类别标签,每一个ConvNet的输出节点数目是相同的,即160维。然后所有的这些Con
2014-10-24 11:52:23 2706
原创 C++ dll动态链接库头文件的写法,主要参照了《windows核心编程》
C++ dll动态链接库头文件的写法,发现这个写法比较好,把该dll导出的函数,以及调用该导出函数可能的错误代码都定义在头文件里面,该怎么修炼写出高质量的代码的习惯呢?自己偶有所得,记下来以备日后查阅。
2014-08-28 11:11:32 3718 1
Deep Learning Face Representation from Predicting 10,000 Classes读书报告
2014-10-24
SVM,ROC读书报告
2014-09-15
OpenCV自己实现的高斯滤波,sobel边缘检测
2014-05-20
ISODATA算法C++
2014-04-12
K均值算法C语言
2014-04-10
Harris角点检测Matlab和C混合
2014-03-28
Huffman编码算法压缩文本文件
2013-11-24
快速傅里叶变换FFT的源代码C++
2013-10-08
二叉树的相关操作
2012-09-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人