人工智能/机器学习
人工智能/机器学习
BeanInJ
只有代码,没有废话。
展开
-
python 04数据分析(numpy矩阵算术、数学函数、io操作)
python 04数据分析写在前面1、矩阵相关概念1.1、逆矩阵1.2、点积(又叫点乘)1.3、广播机制2、矩阵乘法np.dot(a,b)3、矩阵加减法np.add(a,b)np.subtract(b,a)4、矩阵求平均数a.mean(axis=1)写在前面线性代数排上用场了。别慌,不会也没关系,看下面的演示。1、矩阵相关概念1.1、逆矩阵矩阵和逆矩阵是倒数关系,也就是矩阵*逆矩阵=1...原创 2020-03-02 12:38:49 · 570 阅读 · 0 评论 -
python 03数据分析(numpy简单的使用)
python 03数据分析1、图像里的numpy数组1.1、使用jupyter1.2、导入图片1.3、查看该图片的各项数据data.shapedata.dtypedata.max()、data.min()1.4、先熟悉一下数组切片1.5、通过数组改变图片1.5.1、Image.fromarray()1.5.2、plt.imshow()np.transposenp.concatenate1、图像里...原创 2020-01-15 17:24:21 · 1083 阅读 · 0 评论 -
python 02数据分析(numpy入门)
python 02数据分析写在前面1、numpy快速入门2、数组的 索引、切片和迭代2.1、难点:切片2.2、迭代3、改变数组形状4、数组叠加、拆分4.1、叠加4.2、拆分5、numpy的深浅拷贝5.1、完全不复制5.2、视图或浅拷贝5.3、深拷贝5.4、深浅拷贝总结写在前面numpy学习有一些数学里矩阵的知识,如果没学过矩阵也没关系1、numpy快速入门numpy主要用来创建多维数组...原创 2020-01-14 23:27:43 · 384 阅读 · 0 评论 -
python 01数据分析(搭建环境、jupyter的基本使用)
python 01数据分析1、python环境、数据分析相关库1.1、首先检查电脑里是否安装python1.2、安装数据分析相关库1.3、jupyter1.3.1、jupyter启动位置1.3.2、jupyter创建文件1.3.3、jupyter开始写代码2、集成环境anaconda1、python环境、数据分析相关库1.1、首先检查电脑里是否安装python检查是否安装,直接在cmd里输...原创 2020-01-14 00:40:30 · 258 阅读 · 0 评论 -
int.a的python学习笔记_人工智能-python实现逻辑回归402
人工智能之线性回归算法1、数学基础(1)Σ(2)均值(3)方差(4)高斯分布2、线性回归算法,例子(1)例子题目(2)解释(3)找到一条线拟合数据点(4)真实值和预测值之间的误差1、数学基础(1)Σ其中i表示下界,n表示上界, k从i开始取数,一直取到n,全部加起来。∑ i 这样表达也可以,表示对i求和,i是变数(2)均值一般指平均数(3)方差方差是 各个数据 与 平均数 ...原创 2019-11-04 00:05:42 · 180 阅读 · 0 评论 -
int.a的python学习笔记_人工智能-图表操作304
人工智能之图表操作:FacetGrid、PairGrid、heatmap1、FacetGrid2、PairGrid3、heatmap热图1、FacetGridFacetGrid展示数据集的子集FacetGrid可以绘制出多达三个维度(row,col,和hue)的图形import pandas as pdimport matplotlib.pyplot as pltimport nump...原创 2019-07-08 02:09:01 · 235 阅读 · 0 评论 -
int.a的python学习笔记_人工智能-图表操作303
人工智能之图表操作:seaborn1、代码1、代码# coding=gbkimport pandas as pdimport matplotlib.pyplot as pltimport numpy as npimport seaborn as sns#seaborn是在matplotlib基础上封装的#numpy.linspace(start, stop, num=50, e...原创 2019-07-07 01:43:34 · 516 阅读 · 0 评论 -
int.a的python学习笔记_人工智能-图表操作302
人工智能之图表操作:条形图、散点图、柱形图、盒图1、bar 条形图2、scatter 散点图3、hist 柱形图4、boxplot 盒图属性或函数代码1、bar 条形图fig , ax = plt.subplots()ax.bar([单位格],[柱的高],柱的宽度)plt.show()2、scatter 散点图fig , ax = plt.subplots()ax.scatter(a...原创 2019-07-06 01:55:17 · 314 阅读 · 0 评论 -
int.a的python学习笔记_人工智能-图表操作301
人工智能之图表操作:折线图、子图操作1、折线图创建折线图x、y轴倾斜x、y轴标题主标题显示图右上角标2、子图操作1、折线图创建折线图plt.plot(a[‘列名’],a[‘列名’])x、y轴倾斜plt.xticks(rotation=90) #x轴倾斜90度plt.yticks(rotation=90) #y轴倾斜90度x、y轴标题plt.xlabel(‘dat...原创 2019-07-05 00:17:29 · 424 阅读 · 0 评论 -
int.a的python学习笔记_人工智能pandas202
人工智能pandas数据分析之Series、DataFrame1、Series解释属性或方法代码2、DataFrame解释属性或方法代码1、Series解释Series是Pandas中的一维数据结构, 类似于Python中的列表和Numpy中的Ndarray,不同之处在于:Series是一维的,能存储不同类型的数据,有一组索引与元素对应。由一组数据(各种NumPy数据类型)以及一组与之...原创 2019-07-03 23:54:21 · 206 阅读 · 0 评论 -
int.a的python学习笔记_人工智能pandas201
人工智能pandas数据分析1、read_csv 读取文件2、数据类型、内容读取type(a)a.dtypesa.head()a.columnsa.shapea.loc[0]a['列名']3、columns.tolist() 取某一列的数据4、数据计算、取值、排序a['列名'] * 10a['列名'].max()a.sort_values('列名',inplace=True)a.reset_ind...原创 2019-07-03 00:10:26 · 268 阅读 · 0 评论 -
int.a的python学习笔记_人工智能numpy102
人工智能numpy科学计算库021、矩阵数据类型转换2、矩阵取值操作3、矩阵的计算、拆分、拼接4、矩阵的深浅拷贝5、矩阵索引、扩展、排序np.sin(a)argmaxnp.tile()np.sort()1、矩阵数据类型转换import numpy as npb5 = numpy.array(['1','2','3'])b5 = b5.astype(float) #...原创 2019-07-02 00:02:59 · 229 阅读 · 1 评论 -
int.a的python学习笔记_人工智能numpy101
人工智能numpy科学计算库01numpy.txt文件内容截图1、代码2、a=numpy.genfromtxt(' ',,,)3、type(a)4、a.shape5、a[2,3]6、a[:,0:2]7、b3 == 10numpy.txt文件内容截图1、代码import numpy#genfromtxt 从txt中读取数据 delimiter=","指定分隔符为"," dtyp...原创 2019-07-01 02:00:40 · 440 阅读 · 0 评论 -
int.a的python学习笔记1
python学习笔记11、python的安装2、python环境的配置3、检测环境是不是配置成功4、python集成编辑器anaconda的安装1、python的安装python官网下载:https://www.python.org/downloads/下载完是一个.exe文件,双击安装,全点下一步下一步就ok2、python环境的配置搜索环境变量 : 直接在windows左下的搜索栏...原创 2019-06-30 01:54:20 · 500 阅读 · 1 评论 -
机器学习 2 (KNN实例:预测年收入、保存模型)
KNN实例:预测年收入1、预测年收入1.1、导入需要的包1.2、准备数据y和目标值X1.3、转换str类型的数据1.4、分割数据1.5、训练数据并测试1.6、数据归一化1.6.1、数据归一化手动写代码1.6.2、数据归一化包2、保存模型1、预测年收入首先我们准备一个带有年收入信息的表这个表里面自带每年收入值1.1、导入需要的包读取文件1.2、准备数据y和目标值Xy:我们选取s...原创 2020-03-03 15:32:34 · 3644 阅读 · 3 评论 -
机器学习 1 (KNN原理和入门)
KNN原理和入门1、KNN解释2、实例:预测电影类型2.1、算法实现2.2、算法原理3、实例:识别手写数字3.1、算法实现3.1、算法优化1、KNN解释邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。2、实例:预测电影类型用于机器...原创 2020-03-02 22:58:22 · 373 阅读 · 1 评论