杜教筛小结

前置芝士

狄利克雷卷积

进入正题

现在要求一个函数 f f f 的前缀和 S S S

但是往往连 O ( n ) O(n) O(n) 的算法都满足不了毒瘤的出题人,所以需要一个更快的做法,于是时间复杂度 O ( n 2 3 ) O(n^{\frac 2 3}) O(n32) 的杜教筛出现了。

具体做法:

找两个积性函数 g , h g,h g,h,满足 f ∗ g = h f*g=h fg=h

那么有:
h ( i ) = ∑ d ∣ i f ( d ) × g ( i d ) ∑ i = 1 n h ( i ) = ∑ i = 1 n ∑ d ∣ i f ( d ) × g ( i d ) ∑ i = 1 n h ( i ) = ∑ i = 1 n g ( i ) ∑ j = 1 ⌊ n i ⌋ f ( j ) ∑ i = 1 n h ( i ) = ∑ i = 1 n g ( i ) S ( ⌊ n i ⌋ ) h(i)=\sum_{d|i} f(d) \times g(\frac i d)\\ \sum_{i=1}^n h(i)=\sum_{i=1}^n \sum_{d|i} f(d) \times g(\frac i d)\\ \sum_{i=1}^n h(i)=\sum_{i=1}^n g(i) \sum_{j=1}^{\lfloor \frac n i \rfloor} f(j)\\ \sum_{i=1}^n h(i)=\sum_{i=1}^n g(i) S(\lfloor \frac n i \rfloor) h(i)=dif(d)×g(di)i=1nh(i)=i=1ndif(d)×g(di)i=1nh(i)=i=1ng(i)j=1inf(j)i=1nh(i)=i=1ng(i)S(in)

把右边的第一项提出来,就有:
∑ i = 1 n h ( i ) = S ( n ) g ( 1 ) + ∑ i = 2 n g ( i ) S ( ⌊ n i ⌋ ) S ( n ) g ( 1 ) = ∑ i = 1 n h ( i ) − ∑ i = 2 n g ( i ) S ( ⌊ n i ⌋ ) \sum_{i=1}^n h(i)=S(n)g(1)+\sum_{i=2}^n g(i) S(\lfloor \frac n i \rfloor)\\ S(n)g(1)=\sum_{i=1}^n h(i)-\sum_{i=2}^n g(i) S(\lfloor \frac n i \rfloor) i=1nh(i)=S(n)g(1)+i=2ng(i)S(in)S(n)g(1)=i=1nh(i)i=2ng(i)S(in)

那么如果 h h h g g g 的前缀和很好求,那么用一个除法分块加递归就可以做了。

需要注意的是,递归里面需要对每一次求出来的前缀和记忆化,这个可以用哈希或map实现,这样时间复杂度就是 O ( n 3 4 ) O(n^{\frac 3 4}) O(n43)

你可能会问,这样递归下去求出来的前缀和数量不会很多吗?事实上只有 2 n 2\sqrt n 2n 个,也就是不同的 ⌊ n i ⌋ \lfloor \frac n i \rfloor in 的个数,因为每一个求到的前缀和都可以表示为 ⌊ n x 1 x 2 . . . ⌋ \lfloor \frac n {x_1x_2...} \rfloor x1x2...n 的形式。

假如线性筛预处理 S S S 的一部分,那么上面的杜教筛的时间复杂度就可以更加优秀,比如预处理前 K K K 个,根据一些我不会的微积分知识可以算出复杂度会变成 O ( K + n K ) O(K+\dfrac n {\sqrt K}) O(K+K n),取 K = n 2 3 K=n^{\frac 2 3} K=n32 时有最优复杂度,即 O ( n 2 3 ) O(n^{\frac 2 3}) O(n32)

实例

拿筛 μ \mu μ 和筛 φ \varphi φ 做例子。

筛莫比乌斯函数的前缀

f = μ f=\mu f=μ

因为 μ \mu μ 有一个很优秀的性质—— ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d|n}\mu(d)=[n=1] dnμ(d)=[n=1],写成狄利克雷卷积的形式就是: f ∗ I = ϵ f*I=\epsilon fI=ϵ。(不认识这些函数的话请将鼠标滚轮上滑,点开狄利克雷卷积那篇博客)

那么此时使函数 g = I , h = ϵ g=I,h=\epsilon g=I,h=ϵ,就可以做杜教筛了。

把上面的柿子拿来,就是:
S ( n ) g ( 1 ) = ∑ i = 1 n h ( i ) − ∑ i = 2 n g ( i ) S ( ⌊ n i ⌋ ) S(n)g(1)=\sum_{i=1}^n h(i)-\sum_{i=2}^n g(i) S(\lfloor \frac n i \rfloor) S(n)g(1)=i=1nh(i)i=2ng(i)S(in)

显然等于:
S ( n ) = 1 − ∑ i = 2 n 1 × S ( ⌊ n i ⌋ ) S(n)=1-\sum_{i=2}^n 1\times S(\lfloor \frac n i \rfloor) S(n)=1i=2n1×S(in)

代码实现:

#define maxn 6000010
int t;
ll n;
ll mu[maxn];
int prime[maxn],tt=0;
bool v[maxn];
void work()//预处理mu的前6000000位的前缀和
{
	mu[1]=1ll;
	for(int i=2;i<=maxn-10;i++)
	{
		if(!v[i])prime[++tt]=i,mu[i]=-1;
		for(int j=1;j<=tt&&i*prime[j]<=maxn-10;j++)
		{
			v[i*prime[j]]=true;
			if(i%prime[j]==0)
			{
				mu[i*prime[j]]=0;
				break;
			}
			mu[i*prime[j]]=-mu[i];
		}
	}
	for(int i=2;i<=maxn-10;i++)
	mu[i]+=mu[i-1];
}
map<int,int> mapmu;
int solvemu(int x)
{
	if(x<=maxn-10)return mu[x];//假如在6000000位之前
	if(mapmu[x])return mapmu[x];//假如之前算过
	int re=1,l=2,r;
	while(l<=x)//除法分块
	{
		r=x/(x/l);
		re-=(r-l+1)*solvemu(x/l);
		l=r+1;
	}
	mapmu[x]=re;//记忆化
	return re;
}
筛欧拉函数的前缀和

因为欧拉函数有这样一个优秀的性质: ∑ d ∣ n φ ( d ) = n \sum_{d|n}\varphi(d)=n dnφ(d)=n,所以有: φ ∗ I = i d \varphi * I=id φI=id

于是使 g = I g=I g=I h = i d h=id h=id,用上面的公式套下来就是:
S ( n ) = ∑ i = 1 n h ( i ) − ∑ i = 2 n 1 × S ( ⌊ n i ⌋ ) S(n)=\sum_{i=1}^n h(i)-\sum_{i=2}^n 1 \times S(\lfloor \frac n i \rfloor) S(n)=i=1nh(i)i=2n1×S(in)

h h h 显然是个等差数列,可以 O ( 1 ) O(1) O(1) 求。

代码和上面类似,就不贴了。

顺手补上模板题传送门

代码如下:

#include <cstdio>
#include <cstring>
#include <map>
#include <algorithm>
using namespace std;
#define ll long long
#define maxn 4000010
#define uint unsigned int

int t;
uint n;
ll mu[maxn],phi[maxn];
int prime[maxn],tt=0;
bool v[maxn];
void work()
{
	mu[1]=phi[1]=1ll;
	for(int i=2;i<=maxn-10;i++)
	{
		if(!v[i])prime[++tt]=i,mu[i]=-1,phi[i]=i-1;
		for(int j=1;j<=tt&&i*prime[j]<=maxn-10;j++)
		{
			v[i*prime[j]]=true;
			if(i%prime[j]==0)
			{
				mu[i*prime[j]]=0;
				phi[i*prime[j]]=phi[i]*(ll)prime[j];
				break;
			}
			mu[i*prime[j]]=-mu[i];
			phi[i*prime[j]]=phi[i]*phi[prime[j]];
		}
	}
	for(int i=2;i<=maxn-10;i++)
	mu[i]+=mu[i-1],phi[i]+=phi[i-1];
}
map<uint,ll> mapphi;
int tot=0;
ll solvephi(uint x)
{
	if(x<=maxn-10)return phi[x];
	if(mapphi[x])return mapphi[x];
	ll re=(ll)(1+x)*x/2ll;
	uint l=2,r;
	while(l<=x)
	{
		r=x/(x/l);
		re-=(ll)(r-l+1)*solvephi(x/l);
		l=r+1;
	}
	mapphi[x]=re;
	return re;
}
map<int,ll>mapmu;
ll solvemu(uint x)
{
	if(x<=maxn-10)return mu[x];
	if(mapmu[x])return mapmu[x];
	ll re=1;
	uint l=2,r;
	while(l<=x)
	{
		r=x/(x/l);
		re-=(ll)(r-l+1)*solvemu(x/l);
		l=r+1;
	}
	mapmu[x]=re;
	return re;
}

int main()
{
	work();
	scanf("%d",&t);
	while(t--)
	{
		scanf("%u",&n);
		printf("%lld %lld\n",solvephi(n),solvemu(n));
	}
}

但事实上这道模板题还可以做的更优。

利用 φ \varphi φ μ \mu μ 之间的一个性质: φ = μ ∗ i d \varphi = \mu * id φ=μid,那么 φ \varphi φ 的前缀和就可以写成:
∑ i = 1 n φ ( i ) = ∑ i = 1 n ∑ d ∣ i μ ( d ) × i d = ∑ i = 1 n i ∑ j = 1 ⌊ n i ⌋ μ ( j ) = ∑ i = 1 n i × S ( ⌊ n i ⌋ ) \sum_{i=1}^n \varphi(i)=\sum_{i=1}^n \sum_{d|i} \mu(d) \times \frac i d\\ =\sum_{i=1}^n i \sum_{j=1}^{\lfloor \frac n i \rfloor} \mu(j)\\ =\sum_{i=1}^n i \times S(\lfloor \frac n i \rfloor)\\ i=1nφ(i)=i=1ndiμ(d)×di=i=1nij=1inμ(j)=i=1ni×S(in)

这样就可以用除法分块来做,转化成了求 μ \mu μ 的前缀和,因为 μ \mu μ 的前缀和我们有记忆化,所以此时跑起来飞快。

代码如下:

#include <cstdio>
#include <cstring>
#include <map>
#include <algorithm>
using namespace std;
#define maxn 5000010
#define uint unsigned int
#define ll long long

uint T,n;ll ans1,ans2;
int prime[maxn],t=0;
ll mu[maxn];
bool v[maxn];void work()
{
	mu[1]=1;
	for(int i=2;i<=maxn-10;i++)
	{
		if(!v[i])prime[++t]=i,mu[i]=-1;
		for(int j=1;j<=t&&i*prime[j]<=maxn-10;j++){
			v[i*prime[j]]=true;
			if(i%prime[j]==0)break;
			mu[i*prime[j]]=-mu[i];
		}
		mu[i]+=mu[i-1];
	}
}
map<uint,ll>S;
ll solvemu(uint x)
{
	if(x<=maxn-10)return mu[x];
	if(S.count(x))return S[x];
	ll re=1;
	for(uint l=2,r;l<=x;l=r+1)
	r=x/(x/l),re-=(r-l+1)*solvemu(x/l);
	S[x]=re; return re;
}
ll solvephi(uint x)
{
	ll re=0;
	for(uint l=1,r;l<=x;l=r+1)
	r=x/(x/l),re+=1ll*(l+r)*(r-l+1)/2*solvemu(x/l);
	return re;
}

int main()
{
	scanf("%u",&T);work();
	while(T--){
		scanf("%u",&n);
		ans2=solvemu(n);
		ans1=solvephi(n);
		printf("%lld %lld\n",ans1,ans2);
	}
}

但是,这还不是杜教筛的时间复杂度最玄学的地方。

比如说现在有一个函数 f f f,需要求下面这个柿子的值:
∑ i = 1 n f ( ⌊ n i ⌋ ) \sum_{i=1}^n f(\lfloor \frac n i \rfloor) i=1nf(in)

显然是一个除法分块。

但是如果 n ≤ 1 0 10 n\leq 10^{10} n1010 f f f 无法预处理,那么就做不了了。

考虑杜教筛。

假如写除法分块,那么里面求值的语句是长这样子的:

ans+=(r-l+1)*f(n/l);

现在的问题是 f ( n / l ) f(n/l) f(n/l) 求不了。

S ( n ) = ∑ i = 1 n f ( i ) S(n)=\sum_{i=1}^n f(i) S(n)=i=1nf(i),那么 f ( n / l ) = S ( n / l ) − S ( n / l − 1 ) f(n/l)=S(n/l)-S(n/l-1) f(n/l)=S(n/l)S(n/l1)

没错,你肯定猜到了,这样转化一下之后,后面的 S S S 是个前缀和,我们用杜教筛来搞他。

于是这个 f ( n / l ) f(n/l) f(n/l)的问题就解决了。

不知道从哪里蹦出来的读者: 可是你这样的时间复杂度不是 O ( n × n 2 3 ) O(\sqrt n \times n^{\frac 2 3}) O(n ×n32)的吗?更慢了!

看起来是很慢的,但是实际上,由于我们对 S ( n ) S(n) S(n) 求杜教筛后, S ( n / l ) S(n/l) S(n/l) 的前缀和也都被求出来了,于是后面用到的时候复杂度就变成了 O ( 1 ) O(1) O(1) 而不需要重新筛。

所以实际上,这样做的时间复杂度就是 O ( n 2 3 + n ) O(n^{\frac 2 3}+\sqrt n) O(n32+n ) 的。

这个技巧比如这题就有用到。

另外一道题:

简单的数学题   题解

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值