洛谷 P4449 于神之怒加强版 题解

题目传送门

题目大意: ∑ i = 1 n ∑ j = 1 m gcd ⁡ ( i , j ) k \sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)^k i=1nj=1mgcd(i,j)k

题解

一看就是莫比乌斯反演嘛~

推推柿子即可:
∑ i = 1 n ∑ j = 1 m gcd ⁡ ( i , j ) k = ∑ i = 1 n ∑ j = 1 m ∑ d = 1 min ⁡ ( n , m ) d k [ gcd ⁡ ( i , j ) = d ] = ∑ d = 1 min ⁡ ( n , m ) d k ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ gcd ⁡ ( i , j ) = 1 ] = ∑ d = 1 min ⁡ ( n , m ) d k ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ ∑ p ∣ gcd ⁡ ( i , j ) μ ( p ) = ∑ d = 1 min ⁡ ( n , m ) d k ∑ p = 1 min ⁡ ( n , m ) μ ( p ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ p ∣ gcd ⁡ ( i , j ) ] = ∑ d = 1 min ⁡ ( n , m ) d k ∑ p = 1 min ⁡ ( n , m ) μ ( p ) ⌊ n d p ⌋ ⌊ m d p ⌋ \sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)^k\\ =\sum_{i=1}^n \sum_{j=1}^m \sum_{d=1}^{\min(n,m)}d^k [\gcd(i,j)=d]\\ =\sum_{d=1}^{\min(n,m)}d^k \sum_{i=1}^{\lfloor \frac n d \rfloor} \sum_{j=1}^{\lfloor \frac m d \rfloor} [\gcd(i,j)=1]\\ =\sum_{d=1}^{\min(n,m)}d^k \sum_{i=1}^{\lfloor \frac n d \rfloor} \sum_{j=1}^{\lfloor \frac m d \rfloor} \sum_{p|\gcd(i,j)}\mu(p)\\ =\sum_{d=1}^{\min(n,m)}d^k \sum_{p=1}^{\min(n,m)}\mu(p) \sum_{i=1}^{\lfloor \frac n d \rfloor} \sum_{j=1}^{\lfloor \frac m d \rfloor} [p|\gcd(i,j)]\\ =\sum_{d=1}^{\min(n,m)}d^k \sum_{p=1}^{\min(n,m)}\mu(p) \lfloor \frac n {dp} \rfloor \lfloor \frac m {dp} \rfloor i=1nj=1mgcd(i,j)k=i=1nj=1md=1min(n,m)dk[gcd(i,j)=d]=d=1min(n,m)dki=1dnj=1dm[gcd(i,j)=1]=d=1min(n,m)dki=1dnj=1dmpgcd(i,j)μ(p)=d=1min(n,m)dkp=1min(n,m)μ(p)i=1dnj=1dm[pgcd(i,j)]=d=1min(n,m)dkp=1min(n,m)μ(p)dpndpm

i = d p i=dp i=dp ,更换枚举对象,有:
∑ i = 1 min ⁡ ( a , b ) ⌊ n i ⌋ ⌊ m i ⌋ ∑ d ∣ i d k × μ ( i d ) \sum_{i=1}^{\min(a,b)} \lfloor \frac n i \rfloor \lfloor \frac m i \rfloor \sum_{d|i} d^k \times \mu(\frac i d) i=1min(a,b)inimdidk×μ(di)

t ( n ) = n k , S ( n ) = ∑ d ∣ n t ( d ) × μ ( n d ) t(n)=n^k,S(n)=\sum_{d|n} t(d)\times \mu(\frac n d) t(n)=nk,S(n)=dnt(d)×μ(dn),那么有
∑ i = 1 min ⁡ ( a , b ) ⌊ n i ⌋ ⌊ m i ⌋ S ( i ) \sum_{i=1}^{\min(a,b)} \lfloor \frac n i \rfloor \lfloor \frac m i \rfloor S(i) i=1min(a,b)inimS(i)

因为 t t t 是个完全积性函数,所以用线性筛可以 O ( n ) O(n) O(n) 求出,求出来之后预处理 S S S 即可。

很悲剧的是,要是不卡常貌似不是很好过QAQ

但是我还是坚持没有卡常。取而代之的是第一行的代码qwq

代码如下:

#pragma GCC optimize("Ofast")
#include <cstdio>
#include <cstring>
#define maxn 5000010
#define ll long long
#define mod 1000000007

int prime[maxn],tt=0,mu[maxn];
ll t[maxn],S[maxn];
bool v[maxn];
int T,k,n,m;
ll ksm(int x,int y)
{
	ll re=1,tot=(ll)x;
	while(y>0)
	{
		if(y%2==1)re=re*tot%mod;
		tot=tot*tot%mod;
		y/=2;
	}
	return re;
}
void work()
{
	mu[1]=t[1]=1;
	for(int i=2;i<=maxn-10;i++)
	{
		if(!v[i])prime[++tt]=i,mu[i]=-1,t[i]=ksm(i,k);
		for(int j=1;j<=tt&&i*prime[j]<=maxn-10;j++)
		{
			v[i*prime[j]]=true;
			t[i*prime[j]]=t[i]*t[prime[j]]%mod;
			if(i%prime[j]==0)
			{
				mu[i*prime[j]]=0;
				break;
			}
			mu[i*prime[j]]=-mu[i];
		}
	}
	for(int i=1;i<=maxn-10;i++)
	if(mu[i]!=0)for(int j=i;j<=maxn-10;j+=i)
	S[j]=(S[j]+(ll)mu[i]*t[j/i]+mod)%mod;
	for(int i=2;i<=maxn-10;i++)
	S[i]=(S[i]+S[i-1])%mod;
}
inline int min(int x,int y){return x<y?x:y;}

int main()
{
	scanf("%d %d",&T,&k);
	work();
	while(T--)
	{
		scanf("%d %d",&n,&m);
		int l=1,r;
		ll ans=0;
		while(l<=min(n,m))
		{
			r=min(n/(n/l),m/(m/l));
			ans=(ans+(S[r]-S[l-1]+mod)*(ll)(n/l)%mod*(m/l)%mod)%mod;
			l=r+1;
		}
		printf("%lld\n",ans);
	}
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值