洛谷 P1365 WJMZBMR打osu! / Easy 题解

题目传送门

题目大意: 给出一个字符串,每个位置是 ox? 中的一个,如果是 ?,表示这一位不确定是 o 还是 x,各有 50 50 50% 的概率,对于一段长度为 p p p 的极长连续 o,它的贡献为 p 2 p^2 p2,问期望总贡献。

题解

这题差不多的,背景居然也很像呢qwq

b [ i ] b[i] b[i] 表示 i i i 位的分数之和。假设在从 i − 1 i-1 i1 位开始往前有连续 X X Xo,那么贡献就是 X 2 X^2 X2,假如第 i i i 位也是 o,那么贡献变成 ( X + 1 ) 2 = X 2 + 2 X + 1 (X+1)^2=X^2+2X+1 (X+1)2=X2+2X+1,贡献多了 2 X + 1 2X+1 2X+1

为了求出 X X X,我们需要同时递推求出另一个数组 a a a a [ i ] a[i] a[i] 表示从第 i i i 位开始往前期望有多少个连续的 o

下面考虑转移:

  1. i i i 位是 o a [ i ] = a [ i − 1 ] + 1 a[i]=a[i-1]+1 a[i]=a[i1]+1 b [ i ] = b [ i − 1 ] + 2 a [ i − 1 ] + 1 b[i]=b[i-1]+2a[i-1]+1 b[i]=b[i1]+2a[i1]+1
  2. i i i 位是 x a [ i ] = 0 a[i]=0 a[i]=0 b [ i ] = b [ i − 1 ] b[i]=b[i-1] b[i]=b[i1]
  3. i i i 位是 ? a [ i ] = 1 2 ( a [ i − 1 ] + 1 ) a[i]=\frac 1 2(a[i-1]+1) a[i]=21(a[i1]+1) b [ i ] = b [ i − 1 ] + 1 2 ( 2 a [ i − 1 ] + 1 ) b[i]=b[i-1]+\frac 1 2 (2a[i-1]+1) b[i]=b[i1]+21(2a[i1]+1)

3 3 3 种情况稍微解释一下:由于这一位不确定,如果是 x 的话 a [ i ] a[i] a[i] 就是 0 0 0,否则是 a [ i − 1 ] + 1 a[i-1]+1 a[i1]+1,各占 50 50 50% 几率,所以乘 1 2 \frac 1 2 21,后面的 b [ i ] b[i] b[i] 类似,无论第 i i i 位是什么,前面 i − 1 i-1 i1 位的贡献是不会变的,所以先加上 b [ i − 1 ] b[i-1] b[i1],然后再看第 i i i 位的贡献,而第 i i i 位有 1 2 \frac 1 2 21 的概率提供新的贡献 2 a [ i − 1 ] + 1 2a[i-1]+1 2a[i1]+1,还有 1 2 \frac 1 2 21 的概率没贡献,所以再加上 1 2 ( 2 a [ i − 1 ] + 1 ) \frac 1 2(2a[i-1]+1) 21(2a[i1]+1)

代码如下:

#include <cstdio>
#define maxn 300010

int n;
char s[maxn];
double a[maxn],b[maxn];

int main()
{
	scanf("%d %s",&n,s+1);
	for(int i=1;i<=n;i++)
	switch(s[i])
	{
		case 'x':a[i]=0;b[i]=b[i-1];break;
		case 'o':a[i]=a[i-1]+1;b[i]=b[i-1]+2*a[i-1]+1;break;
		case '?':a[i]=0.5*a[i-1]+0.5;b[i]=b[i-1]+a[i-1]+0.5;break;
	}
	printf("%.4lf",b[n]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值