【网络流24题】负载平衡问题 题解

题目传送门

题目大意: 求环形均摊纸牌最少移动步数。

题解

裸的最小费用流,让移动带有费用 1 1 1 即可,也就是相邻的点之间建一条边,流量无限,费用为 1 1 1

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define maxn 110
#define inf 999999999

int n,S,T,a[maxn],tot=0;
struct edge{int x,y,z,cost,next;};
edge e[maxn*maxn<<1];
int first[maxn],len=1;
void buildroad(int x,int y,int z,int cost)
{
	e[++len]=(edge){x,y,z,cost,first[x]};
	first[x]=len;
}
int q[maxn],st,ed,f[maxn],fa[maxn];
bool v[maxn];
bool SPFA()
{
	memset(f,63,sizeof(f));
	memset(fa,0,sizeof(fa));
	st=1;ed=2;q[st]=S;v[S]=true;f[S]=0;
	while(st!=ed)
	{
		int x=q[st++];st=st>T?1:st;v[x]=false;
		for(int i=first[x];i;i=e[i].next)
		{
			int y=e[i].y;
			if(e[i].z&&f[y]>f[x]+e[i].cost)
			{
				f[y]=f[x]+e[i].cost;fa[y]=i;
				if(!v[y])v[q[ed++]=y]=true,ed=ed>T?1:ed;
			}
		}
	}
	return fa[T];
}

int main()
{
	scanf("%d",&n);S=n+1,T=S+1;
	for(int i=1;i<=n;i++)scanf("%d",&a[i]),tot+=a[i],
	buildroad(S,i,a[i],0),buildroad(i,S,0,0);
	tot/=n;
	for(int i=1;i<=n;i++)buildroad(i,T,tot,0),buildroad(T,i,0,0);
	
	for(int i=1;i<n;i++)buildroad(i,i+1,inf,1),buildroad(i+1,i,0,-1);
	buildroad(n,1,inf,1);buildroad(1,n,0,-1);
	for(int i=2;i<=n;i++)buildroad(i,i-1,inf,1),buildroad(i-1,i,0,-1);
	buildroad(1,n,inf,1);buildroad(n,1,0,-1);
	int ans=0;
	while(SPFA())
	{
		int min_flow=inf;
		for(int i=fa[T];i;i=fa[e[i].x])min_flow=min(min_flow,e[i].z);
		for(int i=fa[T];i;i=fa[e[i].x])
		e[i].z-=min_flow,e[i^1].z+=min_flow,ans+=min_flow*e[i].cost;
	}
	printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值