codeforces 932E Team Work 题解

题目传送门

题目大意: 给出 n , k n,k n,k,求 ∑ i = 1 n C n i × i k \sum_{i=1}^n C_n^i \times i^k i=1nCni×ik

题解

看到 i k i^k ik 就想到用第二类斯特林数来展开了。

考虑这个东西的意义:将 k k k 个不同的小球放到 i i i 个不同的盒子中的方案数。那么可以枚举一个 j j j,表示有 j j j 个盒子不是空的(剩下的 i − j i-j ij 个是空的),那么方案数为 C i j × S ( k , j ) × j ! C_i^j\times S(k,j)\times j! Cij×S(k,j)×j! C i j C_i^j Cij 表示从 i i i 个盒子中选出 j j j 个不为空的盒子,然后将 k k k 个不同的小球放进去的方案数就是第二类斯特林数 S ( k , j ) S(k,j) S(k,j),由于盒子是不一样的,所以还要乘上 j ! j! j!

然后大力推一下柿子:
      ∑ i = 1 n C n i × i k = ∑ i = 1 n C n i ∑ j = 1 n C i j × S ( k , j ) × j ! = ∑ j = 1 n S ( k , j ) × j ! ∑ i = 1 n C n i C i j = ∑ j = 1 n S ( k , j ) × j ! ∑ i = 1 n C n j C n − j i − j = ∑ j = 1 n S ( k , j ) × j ! × C n j ∑ i = j n C n − j i − j = ∑ j = 1 n S ( k , j ) × j ! × n ! j ! ( n − j ) ! × 2 n − j = ∑ j = 1 n S ( k , j ) × n ! ( n − j ) ! × 2 n − j \begin{aligned} &~~~~~\sum_{i=1}^n C_n^i \times i^k\\ &=\sum_{i=1}^n C_n^i \sum_{j=1}^n C_i^j \times S(k,j)\times j!\\ &=\sum_{j=1}^n S(k,j)\times j! \sum_{i=1}^n C_n^i C_i^j\\ &=\sum_{j=1}^n S(k,j)\times j! \sum_{i=1}^n C_n^jC_{n-j}^{i-j}\\ &=\sum_{j=1}^n S(k,j)\times j! \times C_n^j \sum_{i=j}^n C_{n-j}^{i-j}\\ &=\sum_{j=1}^n S(k,j)\times j! \times \frac {n!} {j!(n-j)!} \times 2^{n-j}\\ &=\sum_{j=1}^n S(k,j) \times \frac {n!} {(n-j)!} \times 2^{n-j}\\ \end{aligned}      i=1nCni×ik=i=1nCnij=1nCij×S(k,j)×j!=j=1nS(k,j)×j!i=1nCniCij=j=1nS(k,j)×j!i=1nCnjCnjij=j=1nS(k,j)×j!×Cnji=jnCnjij=j=1nS(k,j)×j!×j!(nj)!n!×2nj=j=1nS(k,j)×(nj)!n!×2nj

此时其实已经可以求解了,虽然枚举的上限是 n n n,但是可以发现,当 j j j 大于 k k k S ( k , j ) = 0 S(k,j)=0 S(k,j)=0,所以不需要枚举到 j > k j>k j>k 的部分,那么先 k 2 k^2 k2 预处理 S ( k , j ) S(k,j) S(k,j),就可以求出答案了。

代码如下:

#include <cstdio>
#define maxn 5010
#define mod 1000000007

int n,k,S[maxn][maxn],ans=0;
int ksm(int x,int y)
{
	int re=1;
	while(y)
	{
		if(y&1)re=1ll*re*x%mod;
		x=1ll*x*x%mod;y>>=1;
	}
	return re;
}
int min(int &x,int &y){return x<y?x:y;}

int main()
{
	scanf("%d %d",&n,&k);
	S[0][0]=1;
	for(int i=1;i<=k;i++)for(int j=1;j<=i;j++)
	S[i][j]=(1ll*S[i-1][j]*j%mod+S[i-1][j-1])%mod;
	for(int i=1,prod=n;i<=min(n,k);prod=1ll*prod*(n-i)%mod,i++)
	ans=(ans+1ll*S[k][i]*prod%mod*ksm(2,n-i)%mod)%mod;
	printf("%d",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值