GXOI/GZOI2019 逼死强迫症 题解

题目传送门

题目大意: 有一个 2 × n 2\times n 2×n 的网格图,有 n n n 1 × 2 1\times 2 1×2 的方块,其中一个被劈开变成了两个 1 × 1 1\times 1 1×1 大小的方块,要求两个小方块不相邻,问有多少种不同的用这些方块放满网格图的方案。

题解

有一个结论,设小方块所在的列分别为 x , y x,y x,y,那么 x x x ~ y y y 这段区间放方块的方案唯一,考虑在同行和异行的情况。

在同一行时,中间至少隔着一个横着的 1 × 2 1\times 2 1×2 的方块,即 y − x ≥ 3 y-x\geq 3 yx3 ( y − x )   m o d   2 = 1 (y-x)\bmod 2 =1 (yx)mod2=1,然后另外一行中 x x x y y y 列只能横着放满 1 × 2 1\times 2 1×2 的方块,即方案唯一。

不在同一行时,两行中的 x x x y y y 列这一段,依然只能选择横着放满 1 × 2 1\times 2 1×2,所以类似的满足 y − x ≥ 2 y-x\geq 2 yx2 ( y − x )   m o d   2 = 0 (y-x)\bmod 2=0 (yx)mod2=0,且方案也唯一。

也就是说, y − x > 1 y-x>1 yx>1,并且能够随意放 1 × 2 1\times 2 1×2 的方块的区间只有 [ 1 , x − 1 ] [1,x-1] [1,x1] [ y + 1 , n ] [y+1,n] [y+1,n],设 f i f_i fi 表示一段长度为 i i i 的区间随意放的方案数,可以发现,放方块只有两种方法:竖着放一个,横着放两个(上下各一个),所以有 f i = f i − 1 + f i − 2 f_i=f_{i-1}+f_{i-2} fi=fi1+fi2,即斐波那契数列,不过这里的初值为 f 0 = f 1 = 1 f_0=f_1=1 f0=f1=1

g i g_i gi 表示 n = i n=i n=i 时的答案,那么第 i i i 位的放法也是类似的,竖着放一个,横着放两个,又或者放一个 1 × 1 1\times 1 1×1 的方块。

如果放一个 1 × 1 1\times 1 1×1 的方块,那么考虑枚举另一个方块的位置,方案数就是 2 × ∑ j = 0 i − 3 f j 2\times \sum_{j=0}^{i-3} f_j 2×j=0i3fj,乘 2 2 2 是因为可以交换上下两行得到新的方案。

根据斐波那契数列的性质,可以知道它的前缀和满足 s u m ( n ) = f n + 2 − 1 sum(n)=f_{n+2}-1 sum(n)=fn+21,所以得到 g g g 的递推式: g n = g n − 1 + g n − 2 + 2 s u m ( n − 3 ) = g n − 1 + g n − 2 + 2 f n − 1 − 2 g_n=g_{n-1}+g_{n-2}+2sum(n-3)=g_{n-1}+g_{n-2}+2f_{n-1}-2 gn=gn1+gn2+2sum(n3)=gn1+gn2+2fn12

然后可以表示成矩阵的形式,用矩阵快速幂加速即可:
[ 1 1 2 0 − 2 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 ] [ g n − 1 g n − 2 f n − 1 f n − 2 1 ] = [ g n g n − 1 f n f n − 1 1 ] \left[ \begin{matrix} 1 & 1 & 2 & 0 & -2\\ 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 1 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 \end{matrix} \right] \left[ \begin{matrix} g_{n-1}\\ g_{n-2}\\ f_{n-1}\\ f_{n-2}\\ 1 \end{matrix} \right]= \left[ \begin{matrix} g_n\\ g_{n-1}\\ f_n\\ f_{n-1}\\ 1 \end{matrix} \right] 1100010000201100010020001gn1gn2fn1fn21=gngn1fnfn11

代码如下:

#include <cstdio>
#include <cstring>
#define mod 1000000007

int T,n;
void add(int &x,int y){x=(x+y>=mod?x+y-mod:x+y);}
struct matrix{
	int h,l,a[6][6];matrix(){memset(a,0,sizeof(a));}
	matrix operator *(const matrix &b)
	{
		matrix c;c.h=h;c.l=b.l;
		for(int i=1;i<=c.h;i++)
		for(int j=1;j<=c.l;j++)
		for(int k=1;k<=l;k++)
		add(c.a[i][j],1ll*a[i][k]*b.a[k][j]%mod);
		return c;
	}
}A,B,C,D;

int main()
{
	scanf("%d",&T);A.h=A.l=5;B.h=5;B.l=1;
	A.a[1][1]=1;A.a[1][2]=1;A.a[1][3]=2;A.a[1][5]=mod-2;
	A.a[2][1]=1;A.a[3][3]=1;A.a[3][4]=1;A.a[4][3]=1;A.a[5][5]=1;
	B.a[3][1]=2;B.a[4][1]=1;B.a[5][1]=1;//从f[2]开始,所以a[3][1]=f[2]=2
	while(T--)
	{
		scanf("%d",&n);n-=2;C=A;D=B;
		while(n>0){if(n&1)D=C*D;n>>=1;C=C*C;}
		printf("%d\n",D.a[1][1]);
	}
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值