SP1480 PT07D - Let us count 1 2 3 题解

这篇博客主要讨论了无标号和有根树的Cayley公式在组合数学中的应用。对于无标号的情况,通过n^2的递推计算解决;有根树则需要额外考虑选定根节点的因素。代码实现中包含了四种情况的解决方案,包括直接使用Cayley公式和处理有根树的特殊情况。
摘要由CSDN通过智能技术生成

题目传送门

题目大意: 不写了,LG上翻译就是我提供的……够简洁了吧qwq

题解

容易发现有标号的话就是裸的 Cayley \text{Cayley} Cayley 公式,可以在我博客里找到,有根的话就再乘多一个 n n n 表示选定一个点做根。

无标号的话就是这题,难度跨度有点大……

由于 n n n 范围很小而且 p p p 也不是 n t t ntt ntt 模数,所以直接 n 2 n^2 n2 递推即可,代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define maxn 1010

int n,mod,k;
int ksm(int x,int y){int re=1;for(;(y&1?re=1ll*re*x%mod:0),y;y>>=1,x=1ll*x*x%mod);return re;}
int solve1(){return ksm(n,max(n-2,0));}
int solve2(){return ksm(n,n-1);}
int inv[maxn],f[maxn],g[maxn];
void add(int &x,int y){x=(x+y>=mod?x+y-mod:x+y);}
void dec(int &x,int y){x=(x-y<0?x-y+mod:x-y);}
int solve3(){
	inv[1]=1;for(int i=2;i<=n;i++)inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
	memset(f,0,sizeof(f));memset(g,0,sizeof(g));
	f[1]=1;for(int i=1;i<=n;i++){
		for(int j=1;j<i;j++){
			add(f[i],1ll*f[j]*g[i-j]%mod);
		}
		if(i>1)f[i]=1ll*f[i]*inv[i-1]%mod;
		for(int j=i,val=1ll*f[i]*i%mod;j<=n;j+=i)add(g[j],val);
	}
	return f[n];
}
int solve4(){
	int re=solve3();
	for(int i=n/2+1;i<n;i++)dec(re,1ll*f[i]*f[n-i]%mod);
	if(n%2==0)dec(re,1ll*f[n/2]*(f[n/2]-1)/2%mod);
	return re;
}

int main()
{
	while(~scanf("%d %d %d",&k,&n,&mod)){
		if(k==1)printf("%d\n",solve1());
		if(k==2)printf("%d\n",solve2());
		if(k==3)printf("%d\n",solve3());
		if(k==4)printf("%d\n",solve4());
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值