洛谷省选计划后期 2021 数数题 题解

题目传送门 然而大部分人基本不能看……

题目大意: 好像也不方便写……

题解

大概就是给以后的自己看的东西。

画一个矩阵,第 i i i 行第 j j j 列为 1 1 1 表示 i i i 位置可以选 j j j 这个数,那么画出来就是个正方形左下角缺了个 S S S 大小的直角三角形,右上角缺了个 T T T 大小的直角三角形。问题变成在 1 1 1 位置上放 n n n 个棋子,两两棋子行列互不相同。

假设 S S S 0 0 0,那么剩下问题的答案就是 ( n − T ) T ( n − T ) ! (n-T)^T(n-T)! (nT)T(nT)!,你从 1 1 1 n n n 考虑每个行有多少种放法即可。

假如 S > 0 S>0 S>0,考虑容斥,假设那个左下角的缺口里放了至少 i i i 个棋子,那么剩下的棋子相当于 S = 0 , n ′ = n − i S=0,n'=n-i S=0,n=ni 的问题(也就是上面那个),令 c ( S , i ) c(S,i) c(S,i) 表示大小为 S S S 的直角三角形里放 i i i 个棋子的方案数,答案为:
∑ i = 0 S ( − 1 ) i c ( S , i ) ( n − i − T ) T ( n − i − T ) ! \sum_{i=0}^S (-1)^i c(S,i) (n-i-T)^T(n-i-T)! i=0S(1)ic(S,i)(niT)T(niT)!

然后就是 c c c 的求法,对于 c ( n , m ) c(n,m) c(n,m),看最左边,也就是高为 n n n 的那一列,考虑这一列上有没有棋子,那么就可以得到递推式:
c ( n , m ) = c ( n − 1 , m ) + ( n − m + 1 ) c ( n − 1 , m − 1 ) c(n,m)=c(n-1,m)+(n-m+1)c(n-1,m-1) c(n,m)=c(n1,m)+(nm+1)c(n1,m1)

这个东西很像第二类斯特林数的递推式:
S ( n , m ) = S ( n − 1 , m − 1 ) + m S ( n − 1 , m ) S(n,m)=S(n-1,m-1)+mS(n-1,m) S(n,m)=S(n1,m1)+mS(n1,m)

但似乎又难以联系起来?如果将这个转移方程画在表格上,就会出现神奇的事情(左边是 S S S,右边是 c c c):
在这里插入图片描述
这样看也许还看不出什么,如果你将 c c c 的表格从左对齐变成右对齐,然后 S S S 的转移中,将 m m m 看做这个格子到左边界的距离, c c c 的转移中 n − m + 1 n-m+1 nm+1 看做这个格子到右边界的距离,你会发现,这两个表格的转移是完全对称的!

这意味着 c ( n , m ) = S ( n , n − m ) c(n,m)=S(n,n-m) c(n,m)=S(n,nm) 吗?事实上并不,因为你还要考虑 c , S c,S c,S 的边界问题, S S S n , m n,m n,m 1 1 1 开始,而 c c c n , m n,m n,m 0 0 0 开始,所以实际上是 c ( n , m ) = S ( n + 1 , n − m + 1 ) c(n,m)=S(n+1,n-m+1) c(n,m)=S(n+1,nm+1)

这样你再套一个求一行第二类斯特林数板子就做完了,时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)

代码如下:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define maxn 530000
#define mod 998244353
#define bin(x) (1<<(x))

int n,S,T,F[maxn],G[maxn];
int ksm(int x,int y){int re=1;for(;(y&1?re=1ll*re*x%mod:0),y;y>>=1,x=1ll*x*x%mod);return re;}
int w[maxn],inv[maxn];void prep(int lg){int N=bin(lg);
	inv[1]=1;for(int i=2;i<=N;i++)inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
	for(int i=1,wn;i<N;i<<=1){
		w[i]=1;wn=ksm(3,(mod-1)/(i<<1));
		for(int j=1;j<i;j++)w[i+j]=1ll*w[i+j-1]*wn%mod;
	}
}
int limit,rev[maxn];
void InitRev(int lg){for(int i=1;i<bin(lg);i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(lg-1));}
void reduce(int &x){x+=x>>31&mod;}
void ntt(int *f,int lg,int type=0){
	limit=bin(lg);if(type)reverse(f+1,f+limit);
	for(int i=1;i<limit;i++)if(i<rev[i])swap(f[i],f[rev[i]]);
	for(int mid=1,t;mid<limit;mid<<=1)for(int j=0;j<limit;j+=(mid<<1))for(int i=0;i<mid;i++)
	{t=1ll*f[j+i+mid]*w[mid+i]%mod;reduce(f[j+i+mid]=f[j+i]-t);reduce(f[j+i]+=t-mod);}
	if(type)for(int i=0;i<limit;i++)f[i]=1ll*f[i]*inv[limit]%mod;
}
void NTT(int *f,int *g,int ln,int Mul=2){
	int lg=ceil(log2(ln*Mul));InitRev(lg);ntt(f,lg);ntt(g,lg);
	for(int i=0;i<bin(lg);i++)f[i]=1ll*f[i]*g[i]%mod;ntt(f,lg,1);
}
void get_Stirling(int n){
	prep(ceil(log2(n+1<<1)));
	for(int i=0,inv_fac=1;i<=n;i++){
		F[i]=1ll*ksm(i,n)*inv_fac%mod;
		G[i]=i&1?mod-inv_fac:inv_fac;
		inv_fac=1ll*inv_fac*inv[i+1]%mod;
	}
	NTT(F,G,n+1);
}

int main()
{
	scanf("%d %d %d",&n,&S,&T);
	get_Stirling(S+1);
	static int fac[maxn],ans=0;
	fac[0]=1;for(int i=1;i<=n;i++)fac[i]=1ll*fac[i-1]*i%mod;
	for(int i=0,val;i<=S;i++){
		val=1ll*F[S-i+1]*ksm(n-i-T,T)%mod*fac[n-i-T]%mod;
		reduce(ans-=i&1?val:mod-val);
	}
	printf("%d",ans);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值