win10系统CompatTelRunner或task scheduler占用CPU过高的解决方法

本文介绍如何解决Win10系统中C:WindowsSystem32CompatTelRunner.exe进程占用CPU过高的问题,通过禁用或删除特定计划任务,有效降低CPU使用率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

win10系统的“C:\Windows\System32\CompatTelRunner.exe”占用过高的CPU,而且经常莫名其妙的启动,该问题其实是“客户体验改善计划”导致的,系统会定期启动计划任务,运行CompatTelRunner.exe,可以通过下面的方法进行修复。

步骤如下:

1、在此电脑右键选择管理-计算机管理-系统工具-任务计划程序-Microsoft-Windows-Application Experience,如图所示:

2、可以看到右侧有三个计划任务,都是微软的客户体验改差计划。全部选择禁止或者删除,这样下次电脑再启动之后就不会有这三个计划了。

 

操作完成后重启计算机,若还会出现CompatTelRunner或task scheduler占用CPU过高的情况,那么可以重新打开任务计划程序库\Microsoft\Windows\customer experience improvement program,将右侧的3个选项删除即可!

另外补充一点,在“C:\Windows\System32\Tasks\Microsoft\Windows\Application Experience”可以看到上述右侧三个计划任务的文件,如果仍然出现CompatTelRunner或task scheduler占有CPU过高的情况,可直接把该文件夹删除。

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值