数据结构(二)——线性表(顺序表)

本文详细介绍了线性表的概念、基本操作(包括初始化、销毁、插入、删除和查找),以及顺序表的顺序存储方式(静态和动态分配)。特别关注了插入和删除操作的时间复杂度分析。
摘要由CSDN通过智能技术生成

二、线性表

2.1线性表的定义和基本操作

2.1.1 线性表的基本概念

线性表:是具有相同数据类型的 n 个数据元素的有限序列
(Eg:所有的整数按递增次序排列,不是顺序表,因为所有的整数是无限的)
其中n为表长,当n=0时线性表是一个空表。若用L表示一个线性表,则

a_{i}是线性表中的第i个元素,称为线性表中的位序
a_{1}是表头元素;a_{n}是表尾元素。
除第一个元素外,每个元素有且仅有一个直接前驱;
除最后一个元素外,每个元素有且仅有一个直接后继

2.1.2 线性表的基本操作

  • InitList(&L):初始化表。构造一个空的线性表 L,分配内存空间。
  • DestroyList(&L):销毁操作。销毁线性表,并释放线性表 L 所占用的内存空间。
  • ListInsert(&L, i, &e):插入操作。在表 L 的第 i 个位置插入指定元素 e 。
  • ListDelete(&L, i, &e):删除操作。删除表 L 中第 i 个位置的元素,并用 e 返回删除元素的值。
  • LocateElem(L, e):按值查找操作。在表 L 中查找具有给定关键字值的元素。
  • GetElem(L, i):按位查找操作。获取表 L 中第 i 个位置的元素的值。

其他常用操作

  • Length(L):求表长。返回线性表 L 的长度,即表中元素的个数。
  • PrintList(L):输出操作。按前后顺序输出线性表 L 的所有元素值。
  • Empty(L):判空操作。若表L 为空表,则返回 true,否则返回 false。

对数据操作的思路:创销、增删改查
什么时候要传入引用“&”—―对参数的修改结果需要“带回来”时

#include<stdio.h>

void test ( int &x) {
    x=1024;
    printf ( "test函数内部x=%d\n",x) ;
}

int main() {
    int x =1;
    printf( "调用test前x=d\n",x) ;
    test (x);
    printf ( "调用test后x=%din",x);
}

2.2线性表的顺序表示

2.2.1 顺序表的定义

顺序表:用顺序存储的方式实现线性表
顺序存储:把逻辑上相邻的元素存储在物理位置上也相邻的存储单元中

C语言中通过sizeof(ElementType)可以知道一个数据元素的大小

2.2.2 顺序表的实现

静态分配

#define MaxSize 10 // 定义最大长度 

typedef struct {
	int data[MaxSize]; // 使用静态的数组存放数据元素 
	int length; // 顺序表的当前长度 
}SqList;    //顺序表的类型定义

//基本操作 —— 初始化一个顺序表 
void InitList(SqList &L) {
    for(int i=0;i<MaxSize;i++)
        L.data[i]=0;    //将所有数据元素设置为默认初始值
	L.length = 0; // 顺序表初始长度为0 
}

int main() {
	SqList L; // 声明一个顺序表 
	InitList(L); // 初始化顺序表 
	return 0;
}

如果不设置数据元素的默认值
静态数组的表长确定后就无法更改(存储空间是静态的),最好使用动态分配

动态分配 

#include <stdlib.h>    //malloc函数要使用的头文件
#define InitSize 10 // 顺序表的初始长度

typedef struct {
	int *data; // 声明动态分配数组的指针 
	int MaxSize; // 顺序表的最大容量
	int length; // 顺序表的当前长度 
}SeqList;

// 初始化顺序表 
void InitList(SeqList &L) {
	// 用malloc函数申请一片连续的存储空间 
	L.data = (int *)malloc(InitSize * sizeof(int));  
    //(int*)把malloc返回的指针转换成定义的同类型的指针
	L.length = 0;    //把数据表的长度设为0
	L.MaxSize = InitSize;    //把数据表的最大长度设为初始值
}

// 增加动态数组的长度 
void IncreaseSize(SeqList &L, int len) {
	int *p = L.data;    //把顺序表的data指针的值赋给指针p
	L.data = (int *)malloc((L.MaxSize+len) * sizeof(int));
	for (int i = 0; i < L.length; i++)
		L.data[i] = p[i]; // 将数据复制到新区域 
	L.MaxSize = L.MaxSize + len; // 顺序表最大长度增加len 
	free(p); // 释放原来的内存空间 
}

int main() {
	SeqList L; // 声明一个顺序表 
	InitList(L); // 初始化顺序表 
    ...//往数据表中随便插入几个元素
	IncreaseSize(L, 5);    //再多申请5个空间
	return 0;
}

顺序表的特点:

  1. 随机访问,即可以在 O(1) 时间内找到第 i 个元素
  2. 存储密度高,每个节点只存储数据元素
  3. 拓展容量不方便(即使使用动态分配的方式实现,拓展长度的时间复杂度也比较高,要把数据复制到新的区域)
  4. 插入删除操作不方便,需移动大量元素

2.2.3 顺序表的插入删除

Listlnsert(&L,i,e):插入操作。在表L中的第i个位置上插入指定元素e

#define MaxSize 10 // 定义最大长度  10个元素

typedef struct {
	int data[MaxSize]; // 用静态的数组存放数据元素 
	int length; // 顺序表的当前长度 
}SqList;    //定义数据表SqlList

// 在顺序表i位置插入e
bool ListInsert(SqList &L, int i, int e) {    //注意位序、数组下标的关系 
	if (i < 1 || i > L.length+1) // 判断i的范围是否有效 
		return false;
	if (L.length >= MaxSize) // 判断存储空间是否已满 
		return false;
	for (int j = L.length; j >= i; j--) // 将第i个元素之后的元素后移 
		L.data[j] = L.data[j-1];
	L.data[i-1] = e; // 在位置i处放入e     i-1 下标
	L.length++; // 长度+1 
	return true;
} 

int main() {
	SqList L;    //声明一个顺序表
	InitList(L);    //初始化顺序表
    ...//此次省略一些代码,插入几个元素
	ListInsert(L, 3, 3); //调用函数 在顺序表L的第三个位置插入数据3
	return 0; 
} 

插入操作的时间复杂度 问题规模n=L.length(表长)

最好情况:新元素插入到表尾,不需要移动元素 i = n+1,循环0次;
                  最好时间复杂度 = O(1)

最坏情况:新元素插入到表头,需要将原有的 n 个元素全都向后移动 i = 1,循环 n 次;
                  最坏时间复杂度 = O(n)

平均情况:假设新元素插入到任何一个位置的概率相同,即 i = 1,2,3, … , length+1 的概率都是 p = \frac{1}{n+1},循环 n 次;i=2 时,循环 n-1 次;i=3,循环 n-2 次 …… i =n+1时,循环0次 ,平均循环次数  np + (n-1)p + (n-2)p +... + 1⋅p ==\frac{n(n+1))}{2} \frac{1}{n+1}=\frac{n}{2}
                  平均时间复杂度 = O(n)

ListDelete(&L,i,&e):删除操作。删除表L中第i个位置的元素,并用e返回删除元素的值。

#define MaxSize 10

typedef struct {
	int data[MaxSize];
	int length;
} SqList;

// 删除顺序表i位置的数据并存入e
bool ListDelete(SqList &L, int i, int &e) {    //注意e加了&引用,这里处理的e跟main函数中的e在内存中对应的是同一份数据
	if (i < 1 || i > L.length) // 判断i的范围是否有效
		return false;
	e = L.data[i-1]; // 将被删除的元素赋值给e 
	for (int j = i; j < L.length; j++) //将第i个位置后的元素前移 
		L.data[j-1] = L.data[j];
	L.length--;    //线性表长度-1
	return true; 
}

int main() {
	SqList L;    //声明一个顺序表
	InitList(L);    //初始后顺序表
    ...//此次省略一些代码,插入几个元素
	int e = -1;    //用变量e把删除的元素“带回来”
	if (ListDelete(L, 3, e))    //调用删除操作,删除第三个位置的元素用e返回
		printf("已删除第3个元素,删除元素值为%d\n", e);
	else
		printf("位序i不合法,删除失败\n"); 
	return 0; 
} 

插入操作的时间复杂度 问题规模n=L.length(表长)

最好情况:删除表尾元素,不需要移动其他元素 i = n,循环 0 次;
                  最好时间复杂度 = O(1)

最坏情况:删除表头元素,需要将后续的 n-1 个元素全都向前移动 i = 1,循环 n-1 次;
                  最坏时间复杂度 = O(n)

平均情况:假设删除任何一个元素的概率相同,即 i = 1,2,3, … , length 的概率都是 p = \frac{1}{n},i=1时,循环 n-1 次;i=2 时,循环 n-2 次;i=3,循环 n-3 次 …… i =n时,循环0次 ,平均循环次数  (n-1)p + (n-2)p +... + 1⋅p ==\frac{n(n-1))}{2} \frac{1}{n}=\frac{n}{2}
                  平均时间复杂度 = O(n)

2.2.4 顺序表的查找

GetElem(L,i):按位查找操作。获取表L中第i个位置的元素的值。

// 静态分配的按位查找
#define MaxSize 10    //定义最大长度

typedef struct {
	ElemType data[MaxSize];     //用静态的数组存放元素
	int length;    //顺序表的当前长度
}SqList;         //顺序表的类型定义

ElemType GetElem(SqList L, int i) {  //位序从1开始
	return L.data[i-1];    //数组下标从0开始,所以要-1
}
// 动态分配的按位查找
#define InitSize 10    //顺序表的初始长度

typedef struct {
	ElemType *data;    //指示动态分配数组的指针  *data变量是一个指针 
	int MaxSize;       //顺序表的最大容量
	int length;        //顺序表的当前长度
}SeqList;              //顺序表的类型定义

ElemType GetElem(SeqList L, int i) {
	return L.data[i-1];
}

//*data指向了malloc分配的一整片连续空间的起始地址  即data[i-1]


按位查找的时间复杂度 = O(1)
由于顺序表的各个数据元素在内存中连续存放, 因此可以根据起始地址和数据元素大小立即找到 第 i 个元素——“随机存取”特性

LocateElem(L,e):按值查找操作。在表L中查找具有给定关键字值的元素。 

#define InitSize 10

typedef struct {
	ElemType *data; //指示动态分配数组的指针
	int MaxSize;    //顺序表的最大容量    
	int length;     //顺序表的当前长度
}SqList;

// 查找第一个元素值为e的元素,并返回其位序 
int LocateElem(SqList L, int e) {
	for (int i = 0; i < L.length; i++)
		if (L.data[i] == e)    //依次判断数据表中的数据元素跟传入的数据e是否相等
			return i+1; // 数组下标为i的元素值等于e,返回其位序i+1 
	return 0; // 没有查找到 
}

基本数据类型:int、char、double、 float 等可以直接用运算符“==”比较,结构类型的数据元素不能

按值查找的时间复杂度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值