自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 Learning Discriminative Features with Multiple Granularities for Person Re-Identification论文翻译

全局特征与局部特征的结合已成为提升行人重识别(Re-ID)判别力的核心手段。以往基于部件的方法主要致力于定位具有特定预定义语义的区域以学习局部表征,这增加了学习难度,且对姿态、遮挡等剧烈变化场景不够鲁棒。本文提出一种端到端的多粒度判别特征学习策略,精心设计了一种多分支深度网络——多粒度网络(MGN)。该网络包含一个全局分支和两个局部分支,不再依赖语义区域定位,而是将图像沿水平方向均匀划分为若干条带,并在不同局部的分支中采用不同数量的条带,从而获得多粒度的局部特征表示。

2025-12-16 09:23:57 912

原创 Deep Learning for Person Re-identification:A Survey and Outlook阅读笔记

一句话核心本文系统梳理了“闭世界”行人重识别(Re-ID)已达性能瓶颈后,向“开世界”迁移所面临的五大真实挑战,并给出统一强基线 AGW 与新指标 mINP,为社区提供继续突破的路线图。研究动机与意义理论:闭世界设定在多个基准上已趋饱和,但真实部署仍远未实用,亟需把“实验室问题”升级为“开放系统问题”。现实:智慧城市、跨镜追踪、安防应急等场景对“即插即用、鲁棒、可扩展”的 Re-ID 需求迫切,却受限于标注成本、域漂移、遮挡、模态差异等因素。技术路线。

2025-12-16 08:56:43 631

原创 Bag of Tricks and A Strong Baseline for Deep Person Re-identification论文翻译

本文探索了一种简单且高效的深度行人重识别(ReID)基线。近年来,基于深度神经网络的行人重识别已取得显著进展,但许多最先进的方法都设计了复杂的网络结构并拼接多分支特征。在文献中,一些有效的训练技巧仅在若干论文或开源代码中零星出现。本文系统收集并评估了这些在行人 ReID 中行之有效的训练技巧。通过将这些技巧组合,模型在仅使用全局特征的情况下,即在 Market1501 上取得了 94.5 % 的 Rank-1 准确率和 85.9 % 的 mAP。我们的代码与模型已开源。更高空间分辨率可提升特征粒度。

2025-12-15 15:12:22 831

原创 使用 TensorRT 将 ONNX 转换为 Engine 代码注释

使用TensorRT将onnx转为engine代码注释

2025-12-08 11:26:11 244

原创 LiDAR-Camera BEVFormer论文翻译

摘要:BEVFormer提出了一种创新的多模态时空Transformer框架,通过统一的鸟瞰图(BEV)表示实现自动驾驶感知任务。该框架采用网格状BEV查询与多模态空间交叉注意力(MSCA)模块,将LiDAR的精确空间信息与相机的丰富语义特征在BEV空间内交互融合。同时,通过时间自注意力(TSA)循环聚合历史BEV特征,有效提升动态物体追踪和遮挡检测能力。实验表明,该方法在nuScenes基准测试中达到74.1%的NDS指标,并在3D检测、地图分割等任务中表现优异。相比传统独立融合方法,BEVFormer的

2025-06-26 16:45:00 1182 2

原创 End-to-End Autonomous Driving: Challenges and Frontiers论文翻译与笔记

自动驾驶领域已见证了端到端算法框架方法的快速发展,该框架利用原始传感器输入生成车辆运动规划,而非专注于检测和运动预测等单个任务。与模块化流水线相比,端到端系统受益于感知和规划的联合特征优化。由于大规模数据集的可用性、闭环评估以及自动驾驶算法在挑战性场景中有效执行的需求日益增长,这一领域得以蓬勃发展。在本综述中,我们对 270 多篇论文进行了全面分析,涵盖了端到端自动驾驶的动机、路线图、方法、挑战和未来趋势。我们深入探讨了几个关键挑战,包括多模态、可解释性、因果混淆、鲁棒性和世界模型等。

2025-06-25 18:46:41 880

原创 深度多模态表示学习:综述(自用)

本文综述了深度多模态表示学习的研究进展。重点探讨了三种主要框架:联合表示、协调表示和编码器-解码器,以及典型模型如概率图模型、多模态自编码器等。文章指出多模态表示学习的核心目标是缩小不同模态间的异质性差距,同时保持各模态特征。当前面临的挑战包括数据标注成本高、模态间语义冲突等。未来方向包括迁移学习、无监督/弱监督学习,以及集成推理机制来解决语义冲突问题。本文为多模态学习领域提供了系统的技术分类和前沿展望。

2025-06-24 16:56:27 1150

原创 git命令自用

本文仅自用,推荐自行搜索具体问题参考教程:https://blog.csdn.net/weixin_48152652/article/details/124258293。

2025-06-13 11:03:15 339

原创 CUDA、cuDNN、TensorRT安装卸载指南

cuda、cuDNN、TensorRT安装

2025-05-27 21:37:34 2533

原创 部分Linux常用指令

本文用AI整理了部分常用linux指令

2025-05-23 11:12:03 786

原创 双系统重装Ubuntu20.04并配置环境

双系统重装ubuntu20.04,并配置基本环境设置

2025-05-22 19:45:29 1082

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除