Machine Learning摸肾len(宁)
文章平均质量分 56
来自外星的一只猿
来自外星的一只猿,超级爱吃香蕉。。。。
展开
-
❤起点Machine Learning
机器学习之路Machine Learning 即:摸肾len(宁)谨以此篇记录我的机器学习之路!记得那一年不是一个大雪纷飞的夜晚,我开始准备着手学习大火的人工智能…谁知,这一路走来,我成为了一名爬虫工程师…但是这与我的最初学习目标并不相符,故即日起,开始机器学习摸肾之路,摸肾,不是ML。希望通过此次学习我可以摸的一手好肾!学习资料概览由于本人有一点Python的老本,故 第00...原创 2018-10-12 18:04:12 · 173 阅读 · 0 评论 -
Machine Learning之高等数学篇(七)☞《线性代数与矩阵》
上一节呢,我们学习了《定积分》,这次我们续接上一节的内容,来复习下《线性代数与矩阵》一、线性代数二、矩阵至此:《线性代数与矩阵》,我们就先学习到这里~接下来进入《行列式与方阵》相关的学习!!!!版权声明!!!本系列为博主学心得与体会,所有内容均为原创(✿◡‿◡)欢迎传播、复制、修改。引用、转载等☞请注明转载来源。感谢您的配合用于商业目的,请与...原创 2018-11-20 10:53:47 · 302 阅读 · 0 评论 -
Machine Learning之高等数学篇(八)☞《行列式与方阵》
上一节呢,我们学习了《线性代数与矩阵》,这次我们续接上一节的内容,来学习下《行列式与方阵》一、方阵行列式二、代数余子式三、伴随矩阵四、方阵的逆至此:《行列式与方阵》,我们就先学习到这里~接下来进入《矩阵的初等变换》相关的学习!!!!版权声明!!!本系列为博主学心得与体会,所有内容均为原创(✿◡‿◡)欢迎传播、复制、修改。引用、转载等☞请注明转载来源。感谢您...原创 2018-11-20 11:28:15 · 270 阅读 · 0 评论 -
Machine Learning之高等数学篇(九)☞《矩阵的初等变换》
上一节呢,我们学习了《行列式与方阵》,这次我们续接上一节的内容,来学习下《矩阵的初等变换》一、(引例)矩阵的初等变换二、矩阵的初等变换三、用矩阵的初等变换解方程组(1):四、行阶梯形矩阵,标准形、及相关定理。五、矩阵的秩六、秩的求法至此:《矩阵的初等变换》,我们就先学习到这里~接下来进入《向量组线性表示与线性相关》...原创 2018-11-20 13:47:21 · 345 阅读 · 0 评论 -
Machine Learning之高等数学篇(十六)☞《条件概率、全概率、贝叶斯公式》
上一节呢,我们初探了《概率与数理统计》,这次我们续接上一节的内容,来专题学习《条件概率、全概率、贝叶斯公式》注! 声明,本文转载,本文转载,本文转载!本文转载,侵删! 感谢博主”hearthougan”(✈机票点我)一、条件概率公式 举个例子,比如让你背对着一个人,让你猜猜背后这个人是女孩的概率是多少?直接猜测,肯定是只有50%的概率,假如现在告诉你背后这个人是个长头发,那么女的...原创 2018-11-29 15:11:57 · 339 阅读 · 0 评论 -
Machine Learning之高等数学篇(十四)☞《向量的导数》
上一节呢,我们学习了《正交矩阵与矩阵的QR分解》,这次我们续接上一节的内容,来学习《向量的导数》一、向量的导数二、标量对向量的导数三、标量对方阵的导数至此:《向量的导数》,我们就先学习到这里~接下来进入《概率与数理统计》相关的学习!!!!版权声明!!!本系列为博主学心得与体会,所有内容均为原创(✿◡‿◡)欢迎传播、复制、修改。引用、转载等☞请注明转载来源。感谢您的配...原创 2018-11-28 13:59:40 · 457 阅读 · 0 评论 -
Machine Learning之高等数学篇(十五)☞《概率与数理统计》
上一节呢,我们学习了《向量的导数》,这次我们续接上一节的内容,来学习《概率与数理统计》先做个概率初探~进入此部分然后逐步学习概率相关知识!一、概率论与数理统计思维导图二、排列与组合排列数例:组合数三、古典概型例1:例2:例3:例4:例5:四、联合概率五、条件概率...原创 2018-11-28 17:15:22 · 342 阅读 · 0 评论 -
Machine Learning之高等数学篇(十七)☞《随机变量与常见离散型及其分布》
上一节呢,我们学习了《条件概率、全概率、贝叶斯公式》,这次我们续接上一节的内容,来学习《随机变量与常见离散型及其分布》一、随机变量二、离散型随机变量及其分布律至此:《随机变量与常见离散型及其分布》,我们就先学习到这里~接下来进入《泊松分布、几何分布以及超几何分布》相关的学习!!!!版权声明!!!本系列为博主学心得与体会,所有内容均为原创(✿◡...原创 2018-12-10 11:28:08 · 291 阅读 · 0 评论 -
Machine Learning之高等数学篇(十八)☞《泊松分布、几何分布以及超几何分布》
上一节呢,我们学习了《随机变量与常见离散型及其分布》,这次我们续接上一节的内容,来学习《泊松分布、几何分布以及超几何分布》一、泊松分布二、几何分布三、超几何分布至此:《泊松分布、几何分布以及超几何分布》,我们就先学习到这里~接下来进入《连续型与均匀、指数、正态分布等…》相关的学习!!!!版权声明!!!本系列为博主学心得与体会,所有内容均为原创(✿...原创 2018-12-10 14:10:52 · 1257 阅读 · 0 评论 -
Machine Learning之高等数学篇(十九)☞《连续型与均匀、指数、正态分布等…》
上一节呢,我们学习了《泊松分布、几何分布以及超几何分布》,这次我们续接上一节的内容,来学习《连续型与均匀、指数、正态分布等…》注! 在学习本节内容之前,我们先来回顾下定积分与不定积分一、定积分与不定积分的回顾1.定积分的回顾2.不定积分的回顾二、连续型随机变量及其概率密度☞概念与性质三、一些常用的连续型随机变量...原创 2018-12-11 10:59:41 · 314 阅读 · 0 评论 -
Machine Learning之高等数学篇(十三)☞《正交矩阵与矩阵的QR分解》
上一节呢,我们学习了《特征值与特征向量》,这次我们续接上一节的内容,来学习《正交矩阵与矩阵的QR分解》一、正交矩阵二、QR分解(正交三角分解)三、施密特正交化过程四、例题至此:《正交矩阵与矩阵的QR分解》,我们就先学习到这里~接下来进入《向量的导数》相关的学习!!!!版权声明!!!本系列为博主学心得与体会,所有内容均为原创(✿◡‿◡)欢迎传播、复制、修改。...原创 2018-11-21 18:16:34 · 658 阅读 · 0 评论 -
Machine Learning之高等数学篇(十二)☞《特征值与特征向量》
上一节呢,我们学习了《齐次与非齐次方程组解的结构定理》,这次我们续接上一节的内容,来学习下《特征值与特征向量》一、特征值与特征向量二、特征值的性质三、可对角化矩阵(非常重要)四、正定矩阵五、奇异矩阵至此:《特征值与特征向量》,我们就先学习到这里~接下来进入《正交矩阵与矩阵的QR分解》相关的学习!!!!版权声明!!!本系列为博主学心得与体会,所...原创 2018-11-21 16:24:21 · 456 阅读 · 0 评论 -
Machine Learning之高等数学篇(三)☞《泰勒公式》
上一节呢,我们回顾了下高等数学中导数应用1和2,这次我们续接上一节的内容,来学习下《泰勒公式》三、高等数学部分(续接)导数的应用3关于泰勒公式的解释与意义泰勒公式可以利用这些导数值作为系数,构建一个多项式, 近似的表达函数f(x)对于函数f(x)当x=x0有当x = x_{0}有当x=x0有f′(x0)  f′′(x0)  f...原创 2018-11-15 10:29:29 · 327 阅读 · 0 评论 -
函数的极限
一、函数的极限二、当x→x0时注意:如果此处不好理解概念,看几何解释,把式子0<|x-x0|<δ看成范围来理解,会容易许多,这个0<|x-x0|<δ只是定义了一个范围。当x=x0的时候,f(x0)=A,A是极限。既,在这个范围内,先取x0不动,如图,则A值确定,再取x值,当x无限接近x0的时候,f(x)无限接近于A,接近但不相等,故一定存在|f(x)-A|&...原创 2018-10-19 13:37:36 · 1595 阅读 · 0 评论 -
数列的极限
注意:下面这张图要仔细看,便于理解极限的定义!!!版权声明!!!本系列为博主学心得与体会,所有内容均为原创(✿◡‿◡)欢迎传播、复制、修改。引用、转载等请注明转载来源。感谢您的配合用于商业目的,请与博主采取联系,并请与原书版权所有者联系,谢谢!\(≧▽≦)/我的联系方式:email–> 1209551258@qq.com!!!版权声明!!!生活嘛~...原创 2018-10-19 13:52:56 · 1204 阅读 · 0 评论 -
Machine Learning之高等数学篇(一)☞《高中数学基础篇回顾》
一、前言 今天一改常态,去掉嬉皮笑脸的写法,开始认认真真的对待这次学习,刚打开视频的那一刻我是崩溃的,what?,这不全是当年我不乐意学的那些东西么。。??Black Man What???什么微积分,数列,矩阵,概率。。。。当年觉得没有用,从而“挂”的一塌糊涂,,这是年少不知xx贵,老来“摸肾”空流泪啊!。。。 话不多提哈,不多提了,接下来的学习,都正正经经的对待,安放好浮ca...原创 2018-10-19 15:54:22 · 276 阅读 · 0 评论 -
Machine Learning之高等数学篇(四)☞《多元函数概念及其极限》
上一节呢,我们学习了下《泰勒公式》,这次我们续接上一节的内容,来学习下《多元函数概念及其极限》部分一、多元函数的概念的引入二、※ 二元(多元)函数的定义三、多元函数极限的定义四、例题:至此:《多元函数》相关部分,我们学习的就差不多啦~接下来进入《偏导数与方向导数》相关学习!!!!版权声明!!!本系列为博主学心得与体会,所有内容均为原创(✿◡‿◡)欢迎传播、复制、...原创 2018-11-15 15:14:04 · 318 阅读 · 0 评论 -
Machine Learning之高等数学篇(二)☞《导数、极值、最值》
上一节呢,我们回顾了下高中数学的大部分内容,这次我们续接上一节的内容,来复习下《高等数学》三、高等数学部分1> 导数的应用单调性凹凸性极值----->视频14截图求极值与最值(穿线法,数值穿根法)–>视频15截图开区间无最大值最小值...原创 2018-11-14 14:55:18 · 521 阅读 · 0 评论 -
Machine Learning之高等数学篇(十)☞《向量组线性表示与线性相关》
上一节呢,我们学习了《矩阵的初等变换》,这次我们续接上一节的内容,来学习下《向量组线性表示与线性相关》一、向量组二、向量的线性表示三、向量组的线性相关至此:《向量组线性表示与线性相关》我们就先学习到这里,~接下来进入《齐次与非齐次方程组解的结构定理》相关的学习!!!!版权声明!!!本系列为博主学心得与体会,所有内容均为原创(✿◡‿◡)欢迎传播、复制、修改。引...原创 2018-11-20 15:37:45 · 367 阅读 · 0 评论 -
Machine Learning之高等数学篇(十一)☞《齐次与非齐次方程组解的结构定理》
上一节呢,我们学习了《向量组线性表示与线性相关》,这次我们续接上一节的内容,来学习下《齐次与非齐次方程组解的结构定理》知识点补充:矩阵中知识点落下一个“对称矩阵”,在这个部位加上~…一、线性方程组二、求解线性方程组的步骤三、齐次方程组解的结构定理四、非齐次方程组解的结构定理五、练习至此:《齐次与非齐次方程组解的结构定理》,我们就先学习到这里...原创 2018-11-20 18:04:32 · 997 阅读 · 0 评论 -
Machine Learning之高等数学篇(五)☞《偏导数与方向导数、梯度》
上一节呢,我们学习了多元函数的相关内容,这次我们续接上一节的内容,来学习下《偏导数与方向导数》以及重要的部分《梯度》一、多元函数偏导数例题:二、引入向量向量 ☞感谢<百度百科>(✈机票点我)在引入方向导数之前,先来了解 ☞《方向角》感谢<百度百科>(✈机票点我)三、方向导数相关例题:四、梯度(重要)引证如下:...原创 2018-11-16 13:39:01 · 335 阅读 · 0 评论 -
Machine Learning之高等数学篇(六)☞《定积分》
上一节呢,我们学习了《梯度》,这次我们续接上一节的内容,来学习下《定积分》定积分 ☞感谢<百度百科>(✈机票点我)在定积分计算方面,可再多查阅写资料,“计算方式”等等…在积分中g(x)g(x)g(x)的导数是f(x)f(x)f(x),则在计算值时这样计算g(x)∣ab\left. g(x) \right|_{a}^{b}g(x)∣ab…从而的...原创 2018-11-16 18:22:10 · 259 阅读 · 0 评论 -
Machine Learning之高等数学篇(二十)☞《数字特征之期望、方差...中心距...峰度...等》
上一节呢,我们学习了《连续型与均匀、指数、正态分布等…》,这次我们续接上一节的内容,来学习《数字特征之期望、方差…中心距…峰度…等》一、期望例1例2二、方差常见分布三、标准差四、协方差协方差矩阵五、Pearson相关系数六、中心矩、原点矩七、峰度八、偏度至此:《数字特征之期望、方差…中心距…峰度…等》,我们就先学习到这里...原创 2018-12-11 14:37:44 · 402 阅读 · 0 评论