63、触摸输入的不精确性、不准确性与挫败感

触摸输入的不精确性、不准确性与挫败感

触摸和多点触摸技术带来了许多便利,但也存在一些问题。本文将探讨使用触摸作为主要输入机制时面临的七个问题,并提供相关解决方案。

1. 人类手指作为输入设备的问题

在与触摸系统交互时,用户输入可能会导致意外行为。由于大多数应用没有明确的反馈机制,用户很难理解操作失败的原因,这就是触摸反馈歧义问题。该问题会导致用户与系统脱节、产生挫败感或失去控制感。

与鼠标输入相比,触摸系统在提供反馈以解释意外行为的原因方面通常较差。鼠标输入时,操作系统会提供指针移动、按钮激活等反馈,帮助用户快速确定问题所在。而触摸系统则通常依赖应用程序来提供这些反馈,这增加了开发触摸应用的难度,也降低了应用间反馈的一致性。

意外行为的原因 鼠标反馈 触摸反馈
系统无响应 OS:指针移动 (App)
硬件未能检测到输入 HW:按钮激活 (App)
输入传递到错误位置 OS:可见指针位置 (App)
输入与预期功能不匹配 (App) (App)
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值