第二课 大数据技术之Spark-运行环境和架构入门

第二课 大数据技术之Spark-运行环境和架构入门

第一节 spark运行时环境

1.1 Local 模式

  1. 上面一直在使用的模式可不是 Local 模式哟。所谓的Local 模式,就是不需要其他任何节点资源就可以在本地执行 Spark 代码的环境,一般用于教学,调试,演示等, 之前在 IDEA 中运行代码的环境我们称之为开发环境,不太一样
  2. spark-3.0.0-bin-hadoop3.2.tgz文件上传到Linux 并解压缩。
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module 
cd /opt/module
mv spark-3.0.0-bin-hadoop3.2 spark-local
  1. 启动 Local 环境,进入解压缩后的路径,执行如下指令
bin/spark-shell
# 输入数据 在解压缩文件夹下的 data 目录中,添加 word.txt 文件
hello spark
hello scala
hello spark
hello scala
# 提交任务
sc.textFile("data/word.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
# 启动成功后,可以输入网址进行 Web UI 监控页面访问
http://虚拟机地址:4040
# 退出本地模式 按键Ctrl+C 或输入 Scala 指令
  1. 提交应用到local环境中执行。
    • –class 表示要执行程序的主类,此处可以更换为咱们自己写的应用程序
    • –master local[2] 部署模式,默认为本地模式,数字表示分配的虚拟CPU 核数量
    • spark-examples_2.12-3.0.0.jar 运行的应用类所在的 jar 包,实际使用时,可以设定为咱们自己打的 jar 包
    • 数字 10 表示程序的入口参数,用于设定当前应用的任务数量
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master local[2] \
./examples/jars/spark-examples_2.12-3.0.0.jar \ 10

1.2 Standalone 模式

  1. local 本地模式毕竟只是用来进行练习演示的,真实工作中还是要将应用提交到对应的集群中去执行,这里我们来看看只使用 Spark 自身节点运行的集群模式,也就是我们所谓的独立部署(Standalone)模式。Spark 的 Standalone 模式体现了经典的master-slave 模式。集群规划:
    | | Linux1 | Linux2 | Linux3 |
    | ----- | ------------- | ------ | ------ |
    | Spark | Worker Master | Worker | Worker |
  2. 将 spark-3.0.0-bin-hadoop3.2.tgz 文件上传到Linux 并解压缩在指定位置。三台机器
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module 
cd /opt/module
mv spark-3.0.0-bin-hadoop3.2 spark-standalone
  1. 修改配置文件。
# 进入解压缩后路径的conf目录,修改slaves.template 文件名为 slaves
mv slaves.template slaves
# 修改 slaves 文件,添加work 节点 主机名称
vi slaves

linux1 
linux2 
linux3
# 修改 spark-env.sh.template 文件名为 spark-env.sh
mv spark-env.sh.template spark-env.sh
vi spark-env.sh
# 修改 spark-env.sh 文件,添加 JAVA_HOME 环境变量和集群对应的 master 节点
# 注意:7077 端口,相当于 hadoop3 内部通信的 8020 端口
export JAVA_HOME=/opt/module/jdk1.8.0_144 
SPARK_MASTER_HOST=linux1 
SPARK_MASTER_PORT=7077

# 分发到别的节点
xsync spark-standalone

# 启动集群 执行脚本命令
sbin/start-all.sh

# 查看三台服务器运行进程
================linux1================ 3330 Jps
3238 Worker
3163 Master
================linux2================ 2966 Jps
2908 Worker
================linux3================
2978 Worker
3036 Jps

# 查看 Master 资源监控Web UI 界面: http://linux1:8080
  1. 提交应用
    • –class 表示要执行程序的主类
    • –master spark://linux1:7077 独立部署模式,连接到Spark 集群
    • spark-examples_2.12-3.0.0.jar 运行类所在的 jar 包
    • 数字 10 表示程序的入口参数,用于设定当前应用的任务数量
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://linux1:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \ 10
  1. 提交参数说明
bin/spark-submit \
--class <main-class>
--master <master-url> \
... # other options
<application-jar> \ [application-arguments]
参数解释可选值举例
–classSpark 程序中包含主函数的类
–masterSpark 程序运行的模式(环境)模式:local[*]、spark://linux1:7077、Yarn
–executor-memory 1G指定每个 executor 可用内存为 1G
–total-executor-cores 2指定所有executor 使用的cpu 核数为 2 个
–executor-cores指定每个executor 使用的cpu 核数
application-jar打包好的应用 jar,包含依赖。这个 URL 在集群中全局可见。 比如 hdfs:// 共享存储系统,如果是file:// path, 那么所有的节点的path 都包含同样的 jar
path 都包含同样的 jar传给 main()方法的参数
  1. 配置历史服务。由于 spark-shell 停止掉后,集群监控 linux1:4040 页面就看不到历史任务的运行情况,所以开发时都配置历史服务器记录任务运行情况。
# 修改 spark-defaults.conf.template 文件名为 spark-defaults.conf
mv spark-defaults.conf.template spark-defaults.conf
# 修改 spark-default.conf 文件,配置日志存储路径
spark.eventLog.enabled true 
spark.eventLog.dir hdfs://linux1:8020/directory
# 注意:需要启动 hadoop 集群,HDFS 上的directory 目录需要提前存在。
sbin/start-dfs.sh
hadoop fs -mkdir /directory
# 修改 spark-env.sh 文件, 添加日志配置
# 参数 1 含义:WEB UI 访问的端口号为 18080
# 参数 2 含义:指定历史服务器日志存储路径
# 参数 3 含义:指定保存Application 历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://linux1:8020/directory
-Dspark.history.retainedApplications=30"

# 分发配置文件
xsync conf
# 重新启动集群和历史服务
sbin/start-all.sh
sbin/start-history-server.sh

# 重新执行任务
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://linux1:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \ 10

# 查看历史服务:http://linux1:18080
  1. 配置高可用( HA)。所谓的高可用是因为当前集群中的 Master 节点只有一个,所以会存在单点故障问题。所以为了解决单点故障问题,需要在集群中配置多个 Master 节点,一旦处于活动状态的 Master 发生故障时,由备用 Master 提供服务,保证作业可以继续执行。这里的高可用一般采用Zookeeper 设置。集群规划:
    | | Linux1 | Linux2 | Linux3 |
    | ----- | ----------------------- | ----------------------- | ---------------- |
    | Spark | Master Worker Zookeeper | Master Worker Zookeeper | Worker Zookeeper |
# 停止集群
sbin/stop-all.sh
# 启动Zookeeper
xstart zk
# 修改 spark-env.sh 文件添加如下配置
# 注 释 如 下 内 容 : 
# SPARK_MASTER_HOST=linux1 
# SPARK_MASTER_PORT=7077
# 添加如下内容:
# Master 监控页面默认访问端口为 8080,但是可能会和 Zookeeper 冲突,所以改成 8989,也可以自定义,访问 UI 监控页面时请注意
SPARK_MASTER_WEBUI_PORT=8989
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER
-Dspark.deploy.zookeeper.url=linux1,linux2,linux3
-Dspark.deploy.zookeeper.dir=/spark"

# 发配置文件
xsync conf/	
# 启动集群
sbin/start-all.sh

# 启动linux2的单独 Master 节点,此时 linux2 节点 Master 状态处于备用状态 
sbin/start-master.sh # 查看 linux2:8989

# 提交应用到高可用集群
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://linux1:7077,linux2:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \ 10

# 停止 linux1 的 Master 资源监控进程。查看 linux2 的 Master 资源监控Web UI,稍等一段时间后,linux2 节点的 Master 状态提升为活动状态
kill -9 10223

1.3 Yarn模式

  1. 独立部署(Standalone)模式由 Spark 自身提供计算资源,无需其他框架提供资源。这种方式降低了和其他第三方资源框架的耦合性,独立性非常强。但是你也要记住,Spark 主要是计算框架,而不是资源调度框架,所以本身提供的资源调度并不是它的强项,所以还是和其他专业的资源调度框架集成会更靠谱一些。所以接下来我们来学习在强大的Yarn 环境下 Spark 是如何工作的(其实是因为在国内工作中,Yarn 使用的非常多)。
  2. 解压缩文件, 将 spark-3.0.0-bin-hadoop3.2.tgz 文件上传到 linux 并解压缩,放置在指定位置。
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module 
cd /opt/module
mv spark-3.0.0-bin-hadoop3.2 spark-yarn
  1. 修改配置文件
# 修改 hadoop 配置文件/opt/module/hadoop/etc/hadoop/yarn-site.xml,  并分发
<!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是 true -->
<property>
	<name>yarn.nodemanager.pmem-check-enabled</name>
	<value>false</value>
</property>

<!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是 true -->
<property>
	<name>yarn.nodemanager.vmem-check-enabled</name>
	<value>false</value>
</property>

# 修改 conf/spark-env.sh,添加 JAVA_HOME 和YARN_CONF_DIR 配置
mv spark-env.sh.template spark-env.sh
vi spark-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_144 YARN_CONF_DIR=/opt/module/hadoop/etc/hadoop

# 启动 HDFS 以及 YARN 集群
sbin/start-dfs.sh
sbin/start-all.sh

# 提交应用 http://linux2:8088 hadoop
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
./examples/jars/spark-examples_2.12-3.0.0.jar \ 10

# 配置历史服务器
# 修改 spark-defaults.conf.template 文件名为 spark-defaults.conf
mv spark-defaults.conf.template spark-defaults.conf
# 修改 spark-default.conf 文件,配置日志存储路径
spark.yarn.historyServer.address=linux1:18080 spark.history.ui.port=18080
# 注意:需要启动 hadoop 集群,HDFS 上的directory 目录需要提前存在。
sbin/start-dfs.sh
hadoop fs -mkdir /directory
# 修改 spark-env.sh 文件, 添加日志配置
# 参数 1 含义:WEB UI 访问的端口号为 18080
# 参数 2 含义:指定历史服务器日志存储路径
# 参数 3 含义:指定保存Application 历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://linux1:8020/directory
-Dspark.history.retainedApplications=30"

# 分发配置文件
xsync conf
# 重新启动集群和历史服务
sbin/start-all.sh
sbin/start-history-server.sh

# 提交应用
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
./examples/jars/spark-examples_2.12-3.0.0.jar \ 10

1.4 K8S & Mesos 模式

  1. Mesos 是Apache 下的开源分布式资源管理框架,它被称为是分布式系统的内核,在Twitter 得到广泛使用,管理着 Twitter 超过 30,0000 台服务器上的应用部署,但是在国内,依然使用着传统的Hadoop 大数据框架,所以国内使用 Mesos 框架的并不多,但是原理其实都差不多,这里我们就不做过多讲解了。
  2. 容器化部署是目前业界很流行的一项技术,基于Docker 镜像运行能够让用户更加方便地对应用进行管理和运维。容器管理工具中最为流行的就是Kubernetes(k8s),而 Spark 也在最近的版本中支持了k8s 部署模式。这里我们也不做过多的讲解。给个链接大家自己感受一下:https://spark.apache.org/docs/latest/running-on-kubernetes.html

1.5 Windows 模式

  1. 学习时,每次都需要启动虚拟机,启动集群,这是一个比较繁琐的过程, 并且会占大量的系统资源,导致系统执行变慢,不仅仅影响学习效果,也影响学习进度, Spark 非常暖心地提供了可以在windows 系统下启动本地集群的方式,这样,在不使用虚拟机的情况下,也能学习 Spark 的基本使用。
  2. 解压缩文件,将文件 spark-3.0.0-bin-hadoop3.2.tgz 解压缩到无中文无空格的路径中。
  3. 启动本地环境
# 执行解压缩文件路径下 bin 目录中的 spark-shell.cmd 文件,启动 Spark 本地环境
# 在 bin 目录中创建 input 目录,并添加word.txt 文件, 在命令行中输入脚本代码
# 命令行提交应用 在 DOS 命令行窗口中执行提交指令
spark-submit --class org.apache.spark.examples.SparkPi --master local[2] ../examples/jars/spark-examples_2.12-3.0.0.jar 10

1.6 部署模式对比

在这里插入图片描述

  1. Spark 查看当前 Spark-shell 运行任务情况端口号:4040(计算)
  2. Spark Master 内部通信服务端口号:7077
  3. Standalone 模式下,Spark Master Web 端口号:8080(资源)
  4. Spark 历史服务器端口号:18080
  5. Hadoop YARN 任务运行情况查看端口号:8088

第二节 核心组件

2.1 Spark运行框架结构

  1. Spark 框架的核心是一个计算引擎,整体来说,它采用了标准 master-slave 的结构。如下图所示,它展示了一个Spark 执行时的基本结构。
    • 图形中的Driver 表示 master,负责管理整个集群中的作业任务调度。
    • 图形中的Executor 则是 slave,负责实际执行任务。
      在这里插入图片描述
  2. 由上图可以看出,对于 Spark 框架有两个核心组件:
    • Driver Program
      • SparkContext
    • Executor
      • Cache
      • Task

2.2 Driver&&Executor

  1. Spark 驱动器节点,用于执行 Spark 任务中的 main 方法,负责实际代码的执行工作。Driver 在Spark 作业执行时主要负责:
    • 将用户程序转化为作业(job)
    • 在 Executor 之间调度任务(task)
    • 跟踪Executor 的执行情况
    • 通过UI 展示查询运行情况
  2. 实际上,我们无法准确地描述Driver 的定义,因为在整个的编程过程中没有看到任何有关Driver 的字眼。所以简单理解,所谓的 Driver 就是驱使整个应用运行起来的程序,也称之为Driver 类。
  3. Spark Executor 是集群中工作节点(Worker)中的一个 JVM 进程,负责在 Spark 作业中运行具体任务(Task),任务彼此之间相互独立。Spark 应用启动时,Executor 节点被同时启动,并且始终伴随着整个 Spark 应用的生命周期而存在。如果有Executor 节点发生了故障或崩溃,Spark 应用也可以继续执行,会将出错节点上的任务调度到其他 Executor 节点上继续运行。
  4. Executor 有两个核心功能:
    • 负责运行组成 Spark 应用的任务,并将结果返回给驱动器进程
    • 它们通过自身的块管理器(Block Manager)为用户程序中要求缓存的 RDD 提供内存式存储。RDD 是直接缓存在 Executor 进程内的,因此任务可以在运行时充分利用缓存数据加速运算。

2.3 Master & Worker

  1. Spark 集群的独立部署环境中,不需要依赖其他的资源调度框架,自身就实现了资源调度的功能,所以环境中还有其他两个核心组件:Master 和 Worker。
  2. 这里的 Master 是一个进程,主要负责资源的调度和分配,并进行集群的监控等职责,类似于 Yarn 环境中的 RM, 而Worker 呢,也是进程,一个 Worker 运行在集群中的一台服务器上,由 Master 分配资源对数据进行并行的处理和计算,类似于 Yarn 环境中 NM。

2.4 ApplicationMaster

  1. Hadoop 用户向 YARN 集群提交应用程序时,提交程序中应该包含ApplicationMaster,用于向资源调度器申请执行任务的资源容器 Container,运行用户自己的程序任务 job,监控整个任务的执行,跟踪整个任务的状态,处理任务失败等异常情况。
  2. 说的简单点就是,ResourceManager(资源)和Driver(计算)之间的解耦合靠的就是ApplicationMaster。

第三节 核心概念

3.1 Executor 与 Core

  1. Spark Executor 是集群中运行在工作节点(Worker)中的一个 JVM 进程,是整个集群中的专门用于计算的节点。在提交应用中,可以提供参数指定计算节点的个数,以及对应的资源。这里的资源一般指的是工作节点 Executor 的内存大小和使用的虚拟 CPU 核(Core)数量。应用程序相关启动参数如下:
    | 名称 | 说明 |
    | ----------------- | -------------------------------------- |
    | --num-executors | 配置 Executor 的数量 |
    | --executor-memory | 配置每个 Executor 的内存大小 |
    | --executor-cores | 配置每个 Executor 的虚拟 CPU core 数量 |

  2. 并行度( Parallelism)。在分布式计算框架中一般都是多个任务同时执行,由于任务分布在不同的计算节点进行计算,所以能够真正地实现多任务并行执行,记住,这里是并行,而不是并发。这里我们将整个集群并行执行任务的数量称之为并行度。那么一个作业到底并行度是多少呢?这个取决于框架的默认配置。应用程序也可以在运行过程中动态修改。

3.2 有向无环图( DAG)

在这里插入图片描述

  1. 大数据计算引擎框架我们根据使用方式的不同一般会分为四类,其中第一类就是Hadoop 所承载的 MapReduce,它将计算分为两个阶段,分别为 Map 阶段 和 Reduce 阶段。对于上层应用来说,就不得不想方设法去拆分算法,甚至于不得不在上层应用实现多个 Job 的串联,以完成一个完整的算法,例如迭代计算。 由于这样的弊端,催生了支持 DAG 框架的产生。
  2. 因此,支持 DAG 的框架被划分为第二代计算引擎。如 Tez 以及更上层的Oozie==。这里我们不去细究各种 DAG 实现之间的区别,不过对于当时的 Tez 和 Oozie 来说,大多还是批处理的任务。接下来就是以 Spark 为代表的第三代的计算引擎。==第三代计算引擎的特点主要是 Job 内部的 DAG 支持(不跨越 Job),以及实时计算。
  3. 这里所谓的有向无环图,并不是真正意义的图形,而是由 Spark 程序直接映射成的数据流的高级抽象模型。简单理解就是将整个程序计算的执行过程用图形表示出来,这样更直观, 更便于理解,可以用于表示程序的拓扑结构。
  4. DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方向,不会闭环。

3.3 提交流程

  1. 所谓的提交流程,其实就是我们开发人员根据需求写的应用程序通过 Spark 客户端提交给 Spark 运行环境执行计算的流程。在不同的部署环境中,这个提交过程基本相同,但是又有细微的区别,我们这里不进行详细的比较,但是因为国内工作中,将 Spark 引用部署到Yarn 环境中会更多一些,所以本课程中的提交流程是基于 Yarn 环境的。
    在这里插入图片描述
  2. Spark 应用程序提交到 Yarn 环境中执行的时候,一般会有两种部署执行的方式:Client 和 Cluster。两种模式主要区别在于:Driver 程序的运行节点位置。
  3. Yarn Client 模式Client 模式将用于监控和调度的Driver 模块在客户端执行,而不是在 Yarn 中,所以一般用于测试。
    • Driver 在任务提交的本地机器上运行。
    • Driver启动后会和ResourceManager 通讯申请启动ApplicationMaster。
    • ResourceManager 分配 container,在合适的NodeManager 上启动ApplicationMaster,负责向ResourceManager 申请 Executor 内存。
    • ResourceManager 接到 ApplicationMaster 的资源申请后会分配 container,然后ApplicationMaster 在资源分配指定的NodeManager 上启动 Executor 进程。
    • Executor 进程启动后会向Driver 反向注册,Executor 全部注册完成后Driver 开始执行main 函数。
    • 之后执行到 Action 算子时,触发一个 Job,并根据宽依赖开始划分 stage,每个stage 生成对应的TaskSet,之后将 task 分发到各个Executor 上执行。
  4. Yarn Cluster 模式,Cluster 模式将用于监控和调度的 Driver 模块启动在Yarn 集群资源中执行。一般应用于实际生产环境。
    • 在 YARN Cluster 模式下,任务提交后会和ResourceManager 通讯申请启动ApplicationMaster。
    • 随后ResourceManager 分配 container,在合适的 NodeManager 上启动 ApplicationMaster,此时的 ApplicationMaster 就是Driver。
    • Driver 启动后向 ResourceManager 申请Executor 内存,ResourceManager 接到ApplicationMaster 的资源申请后会分配container,然后在合适的NodeManager 上启动Executor 进程
    • Executor 进程启动后会向Driver 反向注册,Executor 全部注册完成后Driver 开始执行main 函数。
    • 之后执行到 Action 算子时,触发一个 Job,并根据宽依赖开始划分 stage,每个stage 生成对应的TaskSet,之后将 task 分发到各个Executor 上执行。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值