第四课 大数据技术之Spark-RDD行动算子和累加器

第四课 大数据技术之Spark-RDD行动算子和累加器

第一节 RDD行动算子

1.1 行动算子介绍

  1. 所谓的行动算子,其实就是触发作业(Job)执行的方法
package com.atguigu.bigdata.spark.core.rdd.operator.action

import org.apache.spark.{SparkConf, SparkContext}

object Spark01_RDD_Operator_Action {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("Operator")
        val sc = new SparkContext(sparkConf)

        val rdd = sc.makeRDD(List(1,2,3,4))

        // TODO - 行动算子
        // 所谓的行动算子,其实就是触发作业(Job)执行的方法
        // 底层代码调用的是环境对象的runJob方法
        // 底层代码中会创建ActiveJob,并提交执行。
        rdd.collect()
        sc.stop()
    }
}

1.2 常见行动算子

  1. reduce算子:聚集RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据
  2. collect算子:在驱动程序中,以数组Array的形式返回数据集的所有元素。方法会将不同分区的数据按照分区顺序采集到Driver端内存中,形成数组
  3. count算子:返回RDD 中元素的个数
  4. first算子:返回RDD 中的第一个元素
  5. take算子:返回一个由RDD 的前 n 个元素组成的数组
  6. takeOrdered算子:返回该 RDD 排序后的前 n 个元素组成的数组
package com.atguigu.bigdata.spark.core.rdd.operator.action

import org.apache.spark.{SparkConf, SparkContext}

object Spark02_RDD_Operator_Action {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("Operator")
        val sc = new SparkContext(sparkConf)

        val rdd = sc.makeRDD(List(1,2,3,4))

        // TODO - 行动算子

        // reduce
        //val i: Int = rdd.reduce(_+_)
        //println(i)

        // collect : 方法会将不同分区的数据按照分区顺序采集到Driver端内存中,形成数组
        //val ints: Array[Int] = rdd.collect()
        //println(ints.mkString(","))

        // count : 数据源中数据的个数
        val cnt = rdd.count()
        println(cnt)

        // first : 获取数据源中数据的第一个
        val first = rdd.first()
        println(first)

        // take : 获取N个数据
        val ints: Array[Int] = rdd.take(3)
        println(ints.mkString(","))

        // takeOrdered : 数据排序后,取N个数据
        val rdd1 = sc.makeRDD(List(4,2,3,1))
        val ints1: Array[Int] = rdd1.takeOrdered(3)
        println(ints1.mkString(","))

        sc.stop()
    }
}

1.3 aggregate和fold行动算子

  1. aggregate算子:分区的数据通过初始值分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合
  2. fold算子:折叠操作,aggregate 的简化版操作(分区内和分区间的计算一致可以简化)
 package com.atguigu.bigdata.spark.core.rdd.operator.action

import org.apache.spark.{SparkConf, SparkContext}

object Spark03_RDD_Operator_Action {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("Operator")
        val sc = new SparkContext(sparkConf)

        val rdd = sc.makeRDD(List(1,2,3,4),2)

        // TODO - 行动算子

        //10 + 13 + 17 = 40
        // aggregateByKey : 初始值只会参与分区内计算
        // aggregate : 初始值会参与分区内计算,并且和参与分区间计算
        //val result = rdd.aggregate(10)(_+_, _+_)
        val result = rdd.fold(10)(_+_)

        println(result)

        sc.stop()
    }
}

1.4 countByKey行动算子

  1. countByKey行动算子: 统计每种 key 的个数
package com.atguigu.bigdata.spark.core.rdd.operator.action

import org.apache.spark.{SparkConf, SparkContext}

object Spark04_RDD_Operator_Action {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("Operator")
        val sc = new SparkContext(sparkConf)

        //val rdd = sc.makeRDD(List(1,1,1,4),2)
        val rdd = sc.makeRDD(List(
            ("a", 1),("a", 2),("a", 3)
        ))

        // TODO - 行动算子

       //val intToLong: collection.Map[Int, Long] = rdd.countByValue()
        //println(intToLong)
        val stringToLong: collection.Map[String, Long] = rdd.countByKey()
        println(stringToLong)

        sc.stop()
    }
}

1.5 save相关算子

  1. save相关算子: 将数据保存到不同格式的文件中
package com.atguigu.bigdata.spark.core.rdd.operator.action

import org.apache.spark.{SparkConf, SparkContext}

object Spark05_RDD_Operator_Action {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("Operator")
        val sc = new SparkContext(sparkConf)

        //val rdd = sc.makeRDD(List(1,1,1,4),2)
        val rdd = sc.makeRDD(List(
            ("a", 1),("a", 2),("a", 3)
        ))

        // TODO - 行动算子
        rdd.saveAsTextFile("output")
        rdd.saveAsObjectFile("output1")
        // saveAsSequenceFile方法要求数据的格式必须为K-V类型
        rdd.saveAsSequenceFile("output2")

        sc.stop()
    }
}

1.6 foreach相关算子

  1. foreach相关算子: 分布式遍历RDD中的每一个元素,调用指定函数
package com.atguigu.bigdata.spark.core.rdd.operator.action

import org.apache.spark.{SparkConf, SparkContext}

object Spark06_RDD_Operator_Action {

    def main(args: Array[String]): Unit = {

        val sparkConf = new SparkConf().setMaster("local[*]").setAppName("Operator")
        val sc = new SparkContext(sparkConf)

        val rdd = sc.makeRDD(List(1,2,3,4))

        // foreach 其实是Driver端内存集合的循环遍历方法
        rdd.collect().foreach(println)
        println("******************")
        // foreach 其实是Executor端内存数据打印
        rdd.foreach(println)

        // 算子 : Operator(操作)
        //         RDD的方法和Scala集合对象的方法不一样
        //         集合对象的方法都是在同一个节点的内存中完成的。
        //         RDD的方法可以将计算逻辑发送到Executor端(分布式节点)执行
        //         为了区分不同的处理效果,所以将RDD的方法称之为算子。
        //        RDD的方法外部的操作都是在Driver端执行的,而方法内部的逻辑代码是在Executor端执行。

        sc.stop()
    }
}

第二节 RDD序列化和依赖关系

2.1 RDD序列化

  1. 闭包检查。从计算的角度, 算子以外的代码都是在Driver 端执行, 算子里面的代码都是在 Executor 端执行。那么在 scala 的函数式编程中,就会导致算子内经常会用到算子外的数据,这样就形成了闭包的效果,如果使用的算子外的数据无法序列化,就意味着无法传值给Executor 端执行,就会发生错误,所以需要在执行任务计算前,检测闭包内的对象是否可以进行序列化,这个操作我们称之为闭包检测。Scala2.12 版本后闭包编译方式发生了改变
  2. 序列化方法和属性从计算的角度, 算子以外的代码都是在Driver 端执行, 算子里面的代码都是在 Executor端执行,看如下代码:
package com.atguigu.bigdata.spark.core.rdd.serial

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object Spark01_RDD_Serial {

    def main(args: Array[String]): Unit = {
        val sparConf = new SparkConf().setMaster("local").setAppName("WordCount")
        val sc = new SparkContext(sparConf)

        val rdd: RDD[String] = sc.makeRDD(Array("hello world", "hello spark", "hive", "atguigu"))

        val search = new Search("h")

        //search.getMatch1(rdd).collect().foreach(println)
        search.getMatch2(rdd).collect().foreach(println)

        sc.stop()
    }
    // 查询对象
    // 类的构造参数其实是类的属性, 构造参数需要进行闭包检测,其实就等同于类进行闭包检测
    // class Search(query:String) extends Serializable {
    class Search(query:String){

        def isMatch(s: String): Boolean = {
            s.contains(this.query)
        }

        // 函数序列化案例
        def getMatch1 (rdd: RDD[String]): RDD[String] = {
            rdd.filter(isMatch)
        }

        // 属性序列化案例
        def getMatch2(rdd: RDD[String]): RDD[String] = {
            val s = query
            rdd.filter(x => x.contains(s))
        }
    }
}
  1. Kryo 序列化框架参考地址: https://github.com/EsotericSoftware/kryo
  2. Java 的序列化能够序列化任何的类。但是比较重(字节多),序列化后,对象的提交也比较大。Spark 出于性能的考虑,Spark2.0 开始支持另外一种Kryo 序列化机制。Kryo 速度是 Serializable 的 10 倍。当 RDD 在 Shuffle 数据的时候,简单数据类型、数组和字符串类型已经在 Spark 内部使用 Kryo 来序列化。注意:即使使用Kryo 序列化,也要继承Serializable 接口。

2.2 RDD依赖关系

  1. RDD血缘关系,多个连续的RDD的依赖关系,称之为血缘关系。RDD 只支持粗粒度转换,即在大量记录上执行的单个操作。将创建 RDD 的一系列Lineage,(血统)记录下来,以便恢复丢失的分区。RDD 的Lineage 会记录RDD 的元数据信息和转换行为,当该RDD 的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。
    在这里插入图片描述
package com.atguigu.bigdata.spark.core.rdd.dep

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD

object Spark01_RDD_Dep {

    def main(args: Array[String]): Unit = {

        val sparConf = new SparkConf().setMaster("local").setAppName("WordCount")
        val sc = new SparkContext(sparConf)

        val lines: RDD[String] = sc.textFile("datas/word.txt")
        // lines.toDebugString 可以打印血缘关系
        println(lines.toDebugString)
        println("*************************")
        val words: RDD[String] = lines.flatMap(_.split(" "))
        println(words.toDebugString)
        println("*************************")
        val wordToOne = words.map(word=>(word,1))
        println(wordToOne.toDebugString)
        println("*************************")
        val wordToSum: RDD[(String, Int)] = wordToOne.reduceByKey(_+_)
        println(wordToSum.toDebugString)
        println("*************************")
        val array: Array[(String, Int)] = wordToSum.collect()
        array.foreach(println)

        sc.stop()
    }
}
  1. RDD依赖关系,其实就是两个相邻 RDD 之间的关系
  2. RDD窄依赖, 窄依赖表示每一个父(上游)RDD 的 Partition 最多被子(下游)RDD 的一个 Partition 使用, 窄依赖我们形象的比喻为独生子女。
  3. RDD宽依赖, 宽依赖表示同一个父(上游)RDD 的 Partition 被多个子(下游)RDD的 Partition 依赖,会引起 Shuffle,总结:宽依赖我们形象的比喻为多生。

2.3 RDD阶段划分

  1. DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方向, 不会闭环。DAG 记录了RDD 的转换过程和任务的阶段
    在这里插入图片描述

2.4 RDD任务划分

  1. RDD 任务切分中间分为:Application、Job、Stage 和 Task
  2. Application:初始化一个 SparkContext 即生成一个Application;
  3. Job:一个Action算子就会生成一个Job
  4. Stage:Stage 等于宽依赖(ShuffleDependency)的个数加 1
  5. Task:一个 Stage 阶段中,最后一个RDD 的分区个数就是Task 的个数
  6. 注意:Application->Job->Stage->Task 每一层都是1 对 n的关系。
    在这里插入图片描述

第三节 RDD持久化

3.1 RDD Cache 缓存

  1. DD Cache缓存的背景,下面例子效率太低。
package com.atguigu.bigdata.spark.core.rdd.persist

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object Spark02_RDD_Persist {

    def main(args: Array[String]): Unit = {
        val sparConf = new SparkConf().setMaster("local").setAppName("Persist")
        val sc = new SparkContext(sparConf)

        val list = List("Hello Scala", "Hello Spark")

        val rdd = sc.makeRDD(list)

        val flatRDD = rdd.flatMap(_.split(" "))

        val mapRDD = flatRDD.map(word=>{
            println("@@@@@@@@@@@@")
            (word,1)
        })

        // 这里读过一次数据,就没有了
        val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)
        reduceRDD.collect().foreach(println)
        println("**************************************")
        // 这里在读,就是从头开始读 效率太低
        val groupRDD = mapRDD.groupByKey()
        groupRDD.collect().foreach(println)
        
        sc.stop()
    }
}

在这里插入图片描述
2. RDD Cache 缓存:RDD 通过Cache 或者 Persist 方法将前面的计算结果缓存,默认情况下会把数据以缓存在 JVM 的堆内存中。但是并不是这两个方法被调用时立即缓存,而是触发后面的 action 算子时,该RDD 将会被缓存在计算节点的内存中,并供后面重用。

package com.atguigu.bigdata.spark.core.rdd.persist

import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.{SparkConf, SparkContext}

object Spark03_RDD_Persist {

    def main(args: Array[String]): Unit = {
        val sparConf = new SparkConf().setMaster("local").setAppName("Persist")
        val sc = new SparkContext(sparConf)

        val list = List("Hello Scala", "Hello Spark")

        val rdd = sc.makeRDD(list)

        val flatRDD = rdd.flatMap(_.split(" "))

        val mapRDD = flatRDD.map(word=>{
            println("@@@@@@@@@@@@")
            (word,1)
        })
        // cache默认持久化的操作,只能将数据保存到内存中,如果想要保存到磁盘文件,需要更改存储级别
        //mapRDD.cache()

        // 持久化操作必须在行动算子执行时完成的。
        mapRDD.persist(StorageLevel.DISK_ONLY)

        val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)
        reduceRDD.collect().foreach(println)
        println("**************************************")
        val groupRDD = mapRDD.groupByKey()
        groupRDD.collect().foreach(println)
        
        sc.stop()
    }
}

在这里插入图片描述
3. 缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD 的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD 的一系列转换,丢失的数据会被重算,由于RDD 的各个 Partition 是相对独立的,因此只需要计算丢失的部分即可, 并不需要重算全部Partition。
4. Spark 会自动对一些 Shuffle 操作的中间数据做持久化操作(比如:reduceByKey)。这样做的目的是为了当一个节点 Shuffle 失败了避免重新计算整个输入。但是,在实际使用的时候,如果想重用数据,仍然建议调用 persist 或 cache。

3.2 RDD CheckPoint 检查点

  1. 所谓的检查点其实就是通过将RDD中间结果写入磁盘
  2. 由于血缘依赖过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果检查点之后有节点出现问题,可以从检查点开始重做血缘,减少了开销。
  3. 对 RDD 进行 checkpoint 操作并不会马上被执行,必须执行 Action 操作才能触发
package com.atguigu.bigdata.spark.core.rdd.persist

import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.{SparkConf, SparkContext}

object Spark04_RDD_Persist {

    def main(args: Array[String]): Unit = {
        val sparConf = new SparkConf().setMaster("local").setAppName("Persist")
        val sc = new SparkContext(sparConf)
        sc.setCheckpointDir("cp")

        val list = List("Hello Scala", "Hello Spark")

        val rdd = sc.makeRDD(list)

        val flatRDD = rdd.flatMap(_.split(" "))

        val mapRDD = flatRDD.map(word=>{
            println("@@@@@@@@@@@@")
            (word,1)
        })
        // checkpoint 需要落盘,需要指定检查点保存路径
        // 检查点路径保存的文件,当作业执行完毕后,不会被删除
        // 一般保存路径都是在分布式存储系统:HDFS
        mapRDD.checkpoint()

        val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)
        reduceRDD.collect().foreach(println)
        println("**************************************")
        val groupRDD = mapRDD.groupByKey()
        groupRDD.collect().foreach(println)


        sc.stop()
    }
}
  1. 缓存和检查点区别
1. Cache 缓存只是将数据保存起来,不切断血缘依赖。Checkpoint 检查点切断血缘依赖。
  1. Cache 缓存的数据通常存储在磁盘、内存等地方,可靠性低。Checkpoint 的数据通常存储在HDFS 等容错、高可用的文件系统,可靠性高。
  2. 建议对checkpoint()的RDD 使用Cache 缓存,这样 checkpoint 的 job 只需从 Cache 缓存中读取数据即可,否则需要再从头计算一次RDD。
package com.atguigu.bigdata.spark.core.rdd.persist

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object Spark06_RDD_Persist {

    def main(args: Array[String]): Unit = {

        // cache : 将数据临时存储在内存中进行数据重用
        //         会在血缘关系中添加新的依赖。一旦,出现问题,可以重头读取数据
        // persist : 将数据临时存储在磁盘文件中进行数据重用
        //           涉及到磁盘IO,性能较低,但是数据安全
        //           如果作业执行完毕,临时保存的数据文件就会丢失
        // checkpoint : 将数据长久地保存在磁盘文件中进行数据重用
        //           涉及到磁盘IO,性能较低,但是数据安全
        //           为了保证数据安全,所以一般情况下,会独立执行作业
        //           为了能够提高效率,一般情况下,是需要和cache联合使用
        //           执行过程中,会切断血缘关系。重新建立新的血缘关系
        //           checkpoint等同于改变数据源

        val sparConf = new SparkConf().setMaster("local").setAppName("Persist")
        val sc = new SparkContext(sparConf)
        sc.setCheckpointDir("cp")

        val list = List("Hello Scala", "Hello Spark")

        val rdd = sc.makeRDD(list)

        val flatRDD = rdd.flatMap(_.split(" "))

        val mapRDD = flatRDD.map(word=>{
            (word,1)
        })
        //mapRDD.cache()
        mapRDD.checkpoint()
        println(mapRDD.toDebugString)
        val reduceRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)
        reduceRDD.collect().foreach(println)
        println("**************************************")
        println(mapRDD.toDebugString)


        sc.stop()
    }
}

第四节 分区器和RDD文件读取

4.1 分区器

  1. Spark 目前支持Hash分区和Range分区,和用户自定义分区。Hash 分区为当前的默认分区。分区器直接决定了RDD 中分区的个数、RDD 中每条数据经过Shuffle 后进入哪个分区,进而决定了Reduce 的个数。

只有Key-Value 类型的RDD 才有分区器,非 Key-Value 类型的RDD 分区的值是 None
每个RDD 的分区 ID 范围:0 ~ (numPartitions - 1),决定这个值是属于那个分区的。

  1. Hash 分区:对于给定的 key,计算其hashCode,并除以分区个数取余
  2. Range 分区:将一定范围内的数据映射到一个分区中,尽量保证每个分区数据均匀,而且分区间有序
  3. 自定义分区
package com.atguigu.bigdata.spark.core.rdd.part

import org.apache.spark.rdd.RDD
import org.apache.spark.{HashPartitioner, Partitioner, SparkConf, SparkContext}

object Spark01_RDD_Part {

    def main(args: Array[String]): Unit = {
        val sparConf = new SparkConf().setMaster("local").setAppName("WordCount")
        val sc = new SparkContext(sparConf)

        val rdd = sc.makeRDD(List(
            ("nba", "xxxxxxxxx"),
            ("cba", "xxxxxxxxx"),
            ("wnba", "xxxxxxxxx"),
            ("nba", "xxxxxxxxx"),
        ),3)
        val partRDD: RDD[(String, String)] = rdd.partitionBy( new MyPartitioner )

        partRDD.saveAsTextFile("output")

        sc.stop()
    }

    /**
      * 自定义分区器
      * 1. 继承Partitioner
      * 2. 重写方法
      */
    class MyPartitioner extends Partitioner{
        // 分区数量
        override def numPartitions: Int = 3

        // 根据数据的key值返回数据所在的分区索引(从0开始)
        override def getPartition(key: Any): Int = {
            key match {
                case "nba" => 0
                case "wnba" => 1
                case _ => 2
            }
        }
    }
}

4.2 RDD文件读取和保存

  1. Spark 的数据读取及数据保存可以从两个维度来作区分:文件格式以及文件系统。文件格式分为:text 文件、csv 文件、sequence 文件以及Object 文件;文件系统分为:本地文件系统、HDFS、HBASE 以及数据库。
  2. text 文件
// 读取输入文件
val inputRDD: RDD[String] = sc.textFile("input/1.txt")

// 保存数据
inputRDD.saveAsTextFile("output")
  1. sequence 文件。SequenceFile 文件是Hadoop 用来存储二进制形式的key-value 对而设计的一种平面文件(Flat File)。在 SparkContext 中,可以调用sequenceFilekeyClass, valueClass
// 保 存 数 据 为 
SequenceFile dataRDD.saveAsSequenceFile("output")

// 读取 SequenceFile 文件
sc.sequenceFile[Int,Int]("output").collect().foreach(println)
  1. object 对象文件。对象文件是将对象序列化后保存的文件,采用 Java 的序列化机制。可以通过objectFileT: ClassTag函数接收一个路径,读取对象文件,返回对应的 RDD,也可以通过调用saveAsObjectFile()实现对对象文件的输出。因为是序列化所以要指定类型。
// 保存数据
dataRDD.saveAsObjectFile("output")

// 读取数据
sc.objectFile[Int]("output").collect().foreach(println)
  1. 保存数据实例
package com.atguigu.bigdata.spark.core.rdd.io

import org.apache.spark.{SparkConf, SparkContext}

object Spark01_RDD_IO_Save {

    def main(args: Array[String]): Unit = {
        val sparConf = new SparkConf().setMaster("local").setAppName("WordCount")
        val sc = new SparkContext(sparConf)

        val rdd = sc.makeRDD(
            List(
                ("a", 1),
                ("b", 2),
                ("c", 3)
            )
        )

        rdd.saveAsTextFile("output1")
        rdd.saveAsObjectFile("output2")
        rdd.saveAsSequenceFile("output3")

        sc.stop()
    }
}
  1. 读取数据实例
package com.atguigu.bigdata.spark.core.rdd.io

import org.apache.spark.{SparkConf, SparkContext}

object Spark01_RDD_IO_Load {

    def main(args: Array[String]): Unit = {
        val sparConf = new SparkConf().setMaster("local").setAppName("WordCount")
        val sc = new SparkContext(sparConf)

        val rdd = sc.textFile("output1")
        println(rdd.collect().mkString(","))

        val rdd1 = sc.objectFile[(String, Int)]("output2")
        println(rdd1.collect().mkString(","))

        val rdd2 = sc.sequenceFile[String, Int]("output3")
        println(rdd2.collect().mkString(","))

        sc.stop()
    }
}

第五节 累加器和广播变量

5.1 系统累加器

  1. 累加器用来把Executor 端变量信息聚合到Driver 端。在Driver 程序中定义的变量,在Executor 端的每个Task 都会得到这个变量的一份新的副本,每个 task 更新这些副本的值后, 传回Driver 端进行 merge。
  2. 系统累加器
package com.atguigu.bigdata.spark.core.acc

import org.apache.spark.{SparkConf, SparkContext}

object Spark02_Acc {

    def main(args: Array[String]): Unit = {

        val sparConf = new SparkConf().setMaster("local").setAppName("Acc")
        val sc = new SparkContext(sparConf)

        val rdd = sc.makeRDD(List(1,2,3,4))

        // 获取系统累加器
        // Spark默认就提供了简单数据聚合的累加器
        val sumAcc = sc.longAccumulator("sum")

        //sc.doubleAccumulator
        //sc.collectionAccumulator

        rdd.foreach(
            num => {
                // 使用累加器
                sumAcc.add(num)
            }
        )

        // 获取累加器的值
        println(sumAcc.value)
        sc.stop()
    }
}
  1. 系统累加器的少加和多加问题。
package com.atguigu.bigdata.spark.core.acc

import org.apache.spark.{SparkConf, SparkContext}

object Spark03_Acc {

    def main(args: Array[String]): Unit = {

        val sparConf = new SparkConf().setMaster("local").setAppName("Acc")
        val sc = new SparkContext(sparConf)

        val rdd = sc.makeRDD(List(1,2,3,4))

        // 获取系统累加器
        // Spark默认就提供了简单数据聚合的累加器
        val sumAcc = sc.longAccumulator("sum")

        //sc.doubleAccumulator
        //sc.collectionAccumulator

        val mapRDD = rdd.map(
            num => {
                // 使用累加器
                sumAcc.add(num)
                num
            }
        )

        // 获取累加器的值
        // 少加:转换算子中调用累加器,如果没有行动算子的话,那么不会执行
        // 多加:转换算子中调用累加器,如果没有行动算子的话,那么不会执行
        // 一般情况下,累加器会放置在行动算子进行操作
        mapRDD.collect()
        mapRDD.collect()
        println(sumAcc.value)

        sc.stop()
    }
}

5.2 自定义累加器

package com.atguigu.bigdata.spark.core.acc

import org.apache.spark.util.AccumulatorV2
import org.apache.spark.{SparkConf, SparkContext}

import scala.collection.mutable

object Spark04_Acc_WordCount {

    def main(args: Array[String]): Unit = {

        val sparConf = new SparkConf().setMaster("local").setAppName("Acc")
        val sc = new SparkContext(sparConf)

        val rdd = sc.makeRDD(List("hello", "spark", "hello"))

        // 累加器 : WordCount
        // 创建累加器对象
        val wcAcc = new MyAccumulator()
        // 向Spark进行注册
        sc.register(wcAcc, "wordCountAcc")

        rdd.foreach(
            word => {
                // 数据的累加(使用累加器)
                wcAcc.add(word)
            }
        )

        // 获取累加器累加的结果
        println(wcAcc.value)

        sc.stop()
    }
    /*
      自定义数据累加器:WordCount

      1. 继承AccumulatorV2, 定义泛型
         IN : 累加器输入的数据类型 String
         OUT : 累加器返回的数据类型 mutable.Map[String, Long]

      2. 重写方法(6)
     */
    class MyAccumulator extends AccumulatorV2[String, mutable.Map[String, Long]] {

        private var wcMap = mutable.Map[String, Long]()

        // 判断是否初始状态
        override def isZero: Boolean = {
            wcMap.isEmpty
        }

        override def copy(): AccumulatorV2[String, mutable.Map[String, Long]] = {
            new MyAccumulator()
        }

        override def reset(): Unit = {
            wcMap.clear()
        }

        // 获取累加器需要计算的值
        override def add(word: String): Unit = {
            val newCnt = wcMap.getOrElse(word, 0L) + 1
            wcMap.update(word, newCnt)
        }

        // Driver合并多个累加器
        override def merge(other: AccumulatorV2[String, mutable.Map[String, Long]]): Unit = {

            val map1 = this.wcMap
            val map2 = other.value

            map2.foreach{
                case ( word, count ) => {
                    val newCount = map1.getOrElse(word, 0L) + count
                    map1.update(word, newCount)
                }
            }
        }

        // 累加器结果
        override def value: mutable.Map[String, Long] = {
            wcMap
        }
    }
}

5.3 广播变量

  1. 广播变量用来高效分发较大的对象。向所有工作节点发送一个较大的只读值,以供一个或多个 Spark 操作使用。比如,如果你的应用需要向所有节点发送一个较大的只读查询表, 广播变量用起来都很顺手。在多个并行操作中使用同一个变量,但是 Spark 会为每个任务分别发送。
  2. Spark中的广播变量就可以将闭包的数据保存到Executor的内存
  3. Spark中的广播变量不能够更改︰分布式共享只读变量
    在这里插入图片描述
package com.atguigu.bigdata.spark.core.acc

import org.apache.spark.broadcast.Broadcast
import org.apache.spark.{SparkConf, SparkContext}

import scala.collection.mutable

object Spark06_Bc {

    def main(args: Array[String]): Unit = {

        val sparConf = new SparkConf().setMaster("local").setAppName("Acc")
        val sc = new SparkContext(sparConf)

        val rdd1 = sc.makeRDD(List(
            ("a", 1),("b", 2),("c", 3)
        ))
        val map = mutable.Map(("a", 4),("b", 5),("c", 6))

        // 封装广播变量
        val bc: Broadcast[mutable.Map[String, Int]] = sc.broadcast(map)

        rdd1.map {
            case (w, c) => {
                // 访问广播变量
                val l: Int = bc.value.getOrElse(w, 0)
                (w, (c, l))
            }
        }.collect().foreach(println)

        sc.stop()
    }
}

第六节 spark案例实操

6.1 案例需求一

  1. 我们已经学习了 Spark 的基础编程方式,接下来,我们看看在实际的工作中如何使用这些 API 实现具体的需求。这些需求是电商网站的真实需求,所以在实现功能前,咱们必须先将数据准备好。spark-core数据\user_visit_action.txt
    在这里插入图片描述
  2. 上面的数据图是从数据文件中截取的一部分内容,表示为电商网站的用户行为数据,主要包含用户的 4 种行为:搜索,点击,下单,支付。数据规则如下:

数据文件中每行数据采用下划线分隔数据
每一行数据表示用户的一次行为,这个行为只能是 4 种行为的一种
如果搜索关键字为 null,表示数据不是搜索数据
如果点击的品类 ID 和产品 ID 为-1,表示数据不是点击数据
针对于下单行为,一次可以下单多个商品,所以品类 ID 和产品 ID 可以是多个,id 之间采用逗号分隔,如果本次不是下单行为,则数据采用 null 表示
支付行为和下单行为类似

  1. 详细字段说明:
//用户访问动作表
case class UserVisitAction(
date: String,//用户点击行为的日期
user_id: Long,// 用 户 的 ID 
session_id: String,//Session 的 ID 
page_id: Long,// 某 个 页 面 的 ID 
action_time: String,//动作的时间点
search_keyword: String,//用户搜索的关键词
click_category_id: Long,// 某 一 个 商 品 品 类 的 ID 
click_product_id: Long,// 某 一 个 商 品 的 ID 
order_category_ids: String,//一次订单中所有品类的 ID 集合
order_product_ids: String,//一次订单中所有商品的 ID 集合
pay_category_ids: String,//一次支付中所有品类的 ID 集合
pay_product_ids: String,//一次支付中所有商品的 ID 集合
city_id: Long //城市 id
)
  1. 需求说明.品类是指产品的分类,大型电商网站品类分多级,咱们的项目中品类只有一级,不同的公司可能对热门的定义不一样。我们按照每个品类的点击、下单、支付的量来统计热门品类。

鞋 点击数 下单数 支付数
衣服 点击数 下单数 支付数
电脑 点击数 下单数 支付数
例如,综合排名 = 点击数20%+下单数30%+支付数*50%

  1. 本项目需求优化为:先按照点击数排名,靠前的就排名高;如果点击数相同,再比较下单数;下单数再相同,就比较支付数

6.2 需求一实现优化

  1. 实现方案一
package com.atguigu.bigdata.spark.core.req

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object   Spark01_Req1_HotCategoryTop10Analysis {

    def main(args: Array[String]): Unit = {

        // TODO : Top10热门品类
        val sparConf = new SparkConf().setMaster("local[*]").setAppName("HotCategoryTop10Analysis")
        val sc = new SparkContext(sparConf)

        // 1. 读取原始日志数据
        val actionRDD = sc.textFile("datas/user_visit_action.txt")

        // 2. 统计品类的点击数量:(品类ID,点击数量)
        val clickActionRDD = actionRDD.filter(
            action => {
                val datas = action.split("_")
                datas(6) != "-1"
            }
        )

        val clickCountRDD: RDD[(String, Int)] = clickActionRDD.map(
            action => {
                val datas = action.split("_")
                (datas(6), 1)
            }
        ).reduceByKey(_ + _)

        // 3. 统计品类的下单数量:(品类ID,下单数量)
        val orderActionRDD = actionRDD.filter(
            action => {
                val datas = action.split("_")
                datas(8) != "null"
            }
        )

        // orderid => 1,2,3
        // 【(1,1),(2,1),(3,1)】
        val orderCountRDD = orderActionRDD.flatMap(
            action => {
                val datas = action.split("_")
                val cid = datas(8)
                val cids = cid.split(",")
                cids.map(id=>(id, 1))
            }
        ).reduceByKey(_+_)

        // 4. 统计品类的支付数量:(品类ID,支付数量)
        val payActionRDD = actionRDD.filter(
            action => {
                val datas = action.split("_")
                datas(10) != "null"
            }
        )

        // orderid => 1,2,3
        // 【(1,1),(2,1),(3,1)】
        val payCountRDD = payActionRDD.flatMap(
            action => {
                val datas = action.split("_")
                val cid = datas(10)
                val cids = cid.split(",")
                cids.map(id=>(id, 1))
            }
        ).reduceByKey(_+_)

        // 5. 将品类进行排序,并且取前10名
        //    点击数量排序,下单数量排序,支付数量排序
        //    元组排序:先比较第一个,再比较第二个,再比较第三个,依此类推
        //    ( 品类ID, ( 点击数量, 下单数量, 支付数量 ) )
        //
        //  cogroup = connect + group
        val cogroupRDD: RDD[(String, (Iterable[Int], Iterable[Int], Iterable[Int]))] =
            clickCountRDD.cogroup(orderCountRDD, payCountRDD)
        val analysisRDD = cogroupRDD.mapValues{
            case ( clickIter, orderIter, payIter ) => {

                var clickCnt = 0
                val iter1 = clickIter.iterator
                if ( iter1.hasNext ) {
                    clickCnt = iter1.next()
                }
                var orderCnt = 0
                val iter2 = orderIter.iterator
                if ( iter2.hasNext ) {
                    orderCnt = iter2.next()
                }
                var payCnt = 0
                val iter3 = payIter.iterator
                if ( iter3.hasNext ) {
                    payCnt = iter3.next()
                }

                ( clickCnt, orderCnt, payCnt )
            }
        }

        val resultRDD = analysisRDD.sortBy(_._2, false).take(10)

        // 6. 将结果采集到控制台打印出来
        resultRDD.foreach(println)

        sc.stop()
    }
}
  1. 实现方案二
package com.atguigu.bigdata.spark.core.req

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object Spark02_Req1_HotCategoryTop10Analysis1 {

    def main(args: Array[String]): Unit = {

        // TODO : Top10热门品类
        val sparConf = new SparkConf().setMaster("local[*]").setAppName("HotCategoryTop10Analysis")
        val sc = new SparkContext(sparConf)

        // Q : actionRDD重复使用
        // Q : cogroup性能可能较低

        // 1. 读取原始日志数据
        val actionRDD = sc.textFile("datas/user_visit_action.txt")
        actionRDD.cache()

        // 2. 统计品类的点击数量:(品类ID,点击数量)
        val clickActionRDD = actionRDD.filter(
            action => {
                val datas = action.split("_")
                datas(6) != "-1"
            }
        )

        val clickCountRDD: RDD[(String, Int)] = clickActionRDD.map(
            action => {
                val datas = action.split("_")
                (datas(6), 1)
            }
        ).reduceByKey(_ + _)

        // 3. 统计品类的下单数量:(品类ID,下单数量)
        val orderActionRDD = actionRDD.filter(
            action => {
                val datas = action.split("_")
                datas(8) != "null"
            }
        )

        // orderid => 1,2,3
        // 【(1,1),(2,1),(3,1)】
        val orderCountRDD = orderActionRDD.flatMap(
            action => {
                val datas = action.split("_")
                val cid = datas(8)
                val cids = cid.split(",")
                cids.map(id=>(id, 1))
            }
        ).reduceByKey(_+_)

        // 4. 统计品类的支付数量:(品类ID,支付数量)
        val payActionRDD = actionRDD.filter(
            action => {
                val datas = action.split("_")
                datas(10) != "null"
            }
        )

        // orderid => 1,2,3
        // 【(1,1),(2,1),(3,1)】
        val payCountRDD = payActionRDD.flatMap(
            action => {
                val datas = action.split("_")
                val cid = datas(10)
                val cids = cid.split(",")
                cids.map(id=>(id, 1))
            }
        ).reduceByKey(_+_)

        // (品类ID, 点击数量) => (品类ID, (点击数量, 0, 0))
        // (品类ID, 下单数量) => (品类ID, (0, 下单数量, 0))
        //                    => (品类ID, (点击数量, 下单数量, 0))
        // (品类ID, 支付数量) => (品类ID, (0, 0, 支付数量))
        //                    => (品类ID, (点击数量, 下单数量, 支付数量))
        // ( 品类ID, ( 点击数量, 下单数量, 支付数量 ) )

        // 5. 将品类进行排序,并且取前10名
        //    点击数量排序,下单数量排序,支付数量排序
        //    元组排序:先比较第一个,再比较第二个,再比较第三个,依此类推
        //    ( 品类ID, ( 点击数量, 下单数量, 支付数量 ) )
        //
        val rdd1 = clickCountRDD.map{
            case ( cid, cnt ) => {
                (cid, (cnt, 0, 0))
            }
        }
        val rdd2 = orderCountRDD.map{
            case ( cid, cnt ) => {
                (cid, (0, cnt, 0))
            }
        }
        val rdd3 = payCountRDD.map{
            case ( cid, cnt ) => {
                (cid, (0, 0, cnt))
            }
        }

        // 将三个数据源合并在一起,统一进行聚合计算
        val soruceRDD: RDD[(String, (Int, Int, Int))] = rdd1.union(rdd2).union(rdd3)

        val analysisRDD = soruceRDD.reduceByKey(
            ( t1, t2 ) => {
                ( t1._1+t2._1, t1._2 + t2._2, t1._3 + t2._3 )
            }
        )

        val resultRDD = analysisRDD.sortBy(_._2, false).take(10)

        // 6. 将结果采集到控制台打印出来
        resultRDD.foreach(println)

        sc.stop()
    }
}
  1. 实现方案三
package com.atguigu.bigdata.spark.core.req

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object Spark03_Req1_HotCategoryTop10Analysis2 {

    def main(args: Array[String]): Unit = {

        // TODO : Top10热门品类
        val sparConf = new SparkConf().setMaster("local[*]").setAppName("HotCategoryTop10Analysis")
        val sc = new SparkContext(sparConf)

        // Q : 存在大量的shuffle操作(reduceByKey)
        // reduceByKey 聚合算子,spark会提供优化,缓存

        // 1. 读取原始日志数据
        val actionRDD = sc.textFile("datas/user_visit_action.txt")

        // 2. 将数据转换结构
        //    点击的场合 : ( 品类ID,( 1, 0, 0 ) )
        //    下单的场合 : ( 品类ID,( 0, 1, 0 ) )
        //    支付的场合 : ( 品类ID,( 0, 0, 1 ) )
        val flatRDD: RDD[(String, (Int, Int, Int))] = actionRDD.flatMap(
            action => {
                val datas = action.split("_")
                if (datas(6) != "-1") {
                    // 点击的场合
                    List((datas(6), (1, 0, 0)))
                } else if (datas(8) != "null") {
                    // 下单的场合
                    val ids = datas(8).split(",")
                    ids.map(id => (id, (0, 1, 0)))
                } else if (datas(10) != "null") {
                    // 支付的场合
                    val ids = datas(10).split(",")
                    ids.map(id => (id, (0, 0, 1)))
                } else {
                    Nil
                }
            }
        )

        // 3. 将相同的品类ID的数据进行分组聚合
        //    ( 品类ID,( 点击数量, 下单数量, 支付数量 ) )
        val analysisRDD = flatRDD.reduceByKey(
            (t1, t2) => {
                ( t1._1+t2._1, t1._2 + t2._2, t1._3 + t2._3 )
            }
        )

        // 4. 将统计结果根据数量进行降序处理,取前10名
        val resultRDD = analysisRDD.sortBy(_._2, false).take(10)

        // 5. 将结果采集到控制台打印出来
        resultRDD.foreach(println)

        sc.stop()
    }
}
  1. 实现方案四
package com.atguigu.bigdata.spark.core.req

import org.apache.spark.rdd.RDD
import org.apache.spark.util.AccumulatorV2
import org.apache.spark.{SparkConf, SparkContext}

import scala.collection.mutable

object Spark04_Req1_HotCategoryTop10Analysis3 {

    def main(args: Array[String]): Unit = {

        // TODO : Top10热门品类
        val sparConf = new SparkConf().setMaster("local[*]").setAppName("HotCategoryTop10Analysis")
        val sc = new SparkContext(sparConf)

        // 1. 读取原始日志数据
        val actionRDD = sc.textFile("datas/user_visit_action.txt")

        val acc = new HotCategoryAccumulator
        sc.register(acc, "hotCategory")

        // 2. 将数据转换结构
        actionRDD.foreach(
            action => {
                val datas = action.split("_")
                if (datas(6) != "-1") {
                    // 点击的场合
                    acc.add((datas(6), "click"))
                } else if (datas(8) != "null") {
                    // 下单的场合
                    val ids = datas(8).split(",")
                    ids.foreach(
                        id => {
                            acc.add( (id, "order") )
                        }
                    )
                } else if (datas(10) != "null") {
                    // 支付的场合
                    val ids = datas(10).split(",")
                    ids.foreach(
                        id => {
                            acc.add( (id, "pay") )
                        }
                    )
                }
            }
        )

        val accVal: mutable.Map[String, HotCategory] = acc.value
        val categories: mutable.Iterable[HotCategory] = accVal.map(_._2)

        val sort = categories.toList.sortWith(
            (left, right) => {
                if ( left.clickCnt > right.clickCnt ) {
                    true
                } else if (left.clickCnt == right.clickCnt) {
                    if ( left.orderCnt > right.orderCnt ) {
                        true
                    } else if (left.orderCnt == right.orderCnt) {
                        left.payCnt > right.payCnt
                    } else {
                        false
                    }
                } else {
                    false
                }
            }
        )

        // 5. 将结果采集到控制台打印出来
        sort.take(10).foreach(println)

        sc.stop()
    }
    case class HotCategory( cid:String, var clickCnt : Int, var orderCnt : Int, var payCnt : Int )
    /**
      * 自定义累加器
      * 1. 继承AccumulatorV2,定义泛型
      *    IN : ( 品类ID, 行为类型 )
      *    OUT : mutable.Map[String, HotCategory]
      * 2. 重写方法(6)
      */
    class HotCategoryAccumulator extends AccumulatorV2[(String, String), mutable.Map[String, HotCategory]]{

        private val hcMap = mutable.Map[String, HotCategory]()

        override def isZero: Boolean = {
            hcMap.isEmpty
        }

        override def copy(): AccumulatorV2[(String, String), mutable.Map[String, HotCategory]] = {
            new HotCategoryAccumulator()
        }

        override def reset(): Unit = {
            hcMap.clear()
        }

        override def add(v: (String, String)): Unit = {
            val cid = v._1
            val actionType = v._2
            val category: HotCategory = hcMap.getOrElse(cid, HotCategory(cid, 0,0,0))
            if ( actionType == "click" ) {
                category.clickCnt += 1
            } else if (actionType == "order") {
                category.orderCnt += 1
            } else if (actionType == "pay") {
                category.payCnt += 1
            }
            hcMap.update(cid, category)
        }

        override def merge(other: AccumulatorV2[(String, String), mutable.Map[String, HotCategory]]): Unit = {
            val map1 = this.hcMap
            val map2 = other.value

            map2.foreach{
                case ( cid, hc ) => {
                    val category: HotCategory = map1.getOrElse(cid, HotCategory(cid, 0,0,0))
                    category.clickCnt += hc.clickCnt
                    category.orderCnt += hc.orderCnt
                    category.payCnt += hc.payCnt
                    map1.update(cid, category)
                }
            }
        }

        override def value: mutable.Map[String, HotCategory] = hcMap
    }
}

6.3 案例需求二

  1. Top10 热门品类中每个品类的 Top10 活跃 Session 统计, 在需求一的基础上,增加每个品类用户 session 的点击统计。
package com.atguigu.bigdata.spark.core.req

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object Spark05_Req2_HotCategoryTop10SessionAnalysis {

    def main(args: Array[String]): Unit = {

        // TODO : Top10热门品类
        val sparConf = new SparkConf().setMaster("local[*]").setAppName("HotCategoryTop10Analysis")
        val sc = new SparkContext(sparConf)

        val actionRDD = sc.textFile("datas/user_visit_action.txt")
        actionRDD.cache()
        val top10Ids: Array[String] = top10Category(actionRDD)

        // 1. 过滤原始数据,保留点击和前10品类ID
        val filterActionRDD = actionRDD.filter(
            action => {
                val datas = action.split("_")
                if ( datas(6) != "-1" ) {
                    top10Ids.contains(datas(6))
                } else {
                    false
                }
            }
        )

        // 2. 根据品类ID和sessionid进行点击量的统计
        val reduceRDD: RDD[((String, String), Int)] = filterActionRDD.map(
            action => {
                val datas = action.split("_")
                ((datas(6), datas(2)), 1)
            }
        ).reduceByKey(_ + _)

        // 3. 将统计的结果进行结构的转换
        //  (( 品类ID,sessionId ),sum) => ( 品类ID,(sessionId, sum) )
        val mapRDD = reduceRDD.map{
            case ( (cid, sid), sum ) => {
                ( cid, (sid, sum) )
            }
        }

        // 4. 相同的品类进行分组
        val groupRDD: RDD[(String, Iterable[(String, Int)])] = mapRDD.groupByKey()

        // 5. 将分组后的数据进行点击量的排序,取前10名
        val resultRDD = groupRDD.mapValues(
            iter => {
                iter.toList.sortBy(_._2)(Ordering.Int.reverse).take(10)
            }
        )

        resultRDD.collect().foreach(println)


        sc.stop()
    }
    def top10Category(actionRDD:RDD[String]) = {
        val flatRDD: RDD[(String, (Int, Int, Int))] = actionRDD.flatMap(
            action => {
                val datas = action.split("_")
                if (datas(6) != "-1") {
                    // 点击的场合
                    List((datas(6), (1, 0, 0)))
                } else if (datas(8) != "null") {
                    // 下单的场合
                    val ids = datas(8).split(",")
                    ids.map(id => (id, (0, 1, 0)))
                } else if (datas(10) != "null") {
                    // 支付的场合
                    val ids = datas(10).split(",")
                    ids.map(id => (id, (0, 0, 1)))
                } else {
                    Nil
                }
            }
        )

        val analysisRDD = flatRDD.reduceByKey(
            (t1, t2) => {
                ( t1._1+t2._1, t1._2 + t2._2, t1._3 + t2._3 )
            }
        )

        analysisRDD.sortBy(_._2, false).take(10).map(_._1)
    }
}

6.4 案例需求三

  1. 页面单跳转化率。计算页面单跳转化率,什么是页面单跳转换率,比如一个用户在一次 Session 过程中访问的页面路径 3,5,7,9,10,21,那么页面 3 跳到页面 5 叫一次单跳,7-9 也叫一次单跳, 那么单跳转化率就是要统计页面点击的概率。
  2. 比如:计算 3-5 的单跳转化率,先获取符合条件的 Session 对于页面 3 的访问次数(PV) 为 A,然后获取符合条件的 Session 中访问了页面 3 又紧接着访问了页面 5 的次数为 B,那么 B/A 就是 3-5 的页面单跳转化率。
  3. 统计页面单跳转化率意义。产品经理和运营总监,可以根据这个指标,去尝试分析,整个网站,产品,各个页面的表现怎么样,是不是需要去优化产品的布局;吸引用户最终可以进入最后的支付页面。数据分析师,可以此数据做更深一步的计算和分析。企业管理层,可以看到整个公司的网站,各个页面的之间的跳转的表现如何,可以适当调整公司的经营战略或策略。
package com.atguigu.bigdata.spark.core.req

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object Spark06_Req3_PageflowAnalysis {

    def main(args: Array[String]): Unit = {

        // TODO : Top10热门品类
        val sparConf = new SparkConf().setMaster("local[*]").setAppName("HotCategoryTop10Analysis")
        val sc = new SparkContext(sparConf)

        val actionRDD = sc.textFile("datas/user_visit_action.txt")

        val actionDataRDD = actionRDD.map(
            action => {
                val datas = action.split("_")
                UserVisitAction(
                    datas(0),
                    datas(1).toLong,
                    datas(2),
                    datas(3).toLong,
                    datas(4),
                    datas(5),
                    datas(6).toLong,
                    datas(7).toLong,
                    datas(8),
                    datas(9),
                    datas(10),
                    datas(11),
                    datas(12).toLong
                )
            }
        )
        actionDataRDD.cache()

        // TODO 对指定的页面连续跳转进行统计
        // 1-2,2-3,3-4,4-5,5-6,6-7
        val ids = List[Long](1,2,3,4,5,6,7)
        val okflowIds: List[(Long, Long)] = ids.zip(ids.tail)

        // TODO 计算分母
        val pageidToCountMap: Map[Long, Long] = actionDataRDD.filter(
            action => {
                ids.init.contains(action.page_id)
            }
        ).map(
            action => {
                (action.page_id, 1L)
            }
        ).reduceByKey(_ + _).collect().toMap

        // TODO 计算分子

        // 根据session进行分组
        val sessionRDD: RDD[(String, Iterable[UserVisitAction])] = actionDataRDD.groupBy(_.session_id)

        // 分组后,根据访问时间进行排序(升序)
        val mvRDD: RDD[(String, List[((Long, Long), Int)])] = sessionRDD.mapValues(
            iter => {
                val sortList: List[UserVisitAction] = iter.toList.sortBy(_.action_time)

                // 【1,2,3,4】
                // 【1,2】,【2,3】,【3,4】
                // 【1-2,2-3,3-4】
                // Sliding : 滑窗
                // 【1,2,3,4】
                // 【2,3,4】
                // zip : 拉链
                val flowIds: List[Long] = sortList.map(_.page_id)
                val pageflowIds: List[(Long, Long)] = flowIds.zip(flowIds.tail)

                // 将不合法的页面跳转进行过滤
                pageflowIds.filter(
                    t => {
                        okflowIds.contains(t)
                    }
                ).map(
                    t => {
                        (t, 1)
                    }
                )
            }
        )
        // ((1,2),1)
        val flatRDD: RDD[((Long, Long), Int)] = mvRDD.map(_._2).flatMap(list=>list)
        // ((1,2),1) => ((1,2),sum)
        val dataRDD = flatRDD.reduceByKey(_+_)

        // TODO 计算单跳转换率
        // 分子除以分母
        dataRDD.foreach{
            case ( (pageid1, pageid2), sum ) => {
                val lon: Long = pageidToCountMap.getOrElse(pageid1, 0L)

                println(s"页面${pageid1}跳转到页面${pageid2}单跳转换率为:" + ( sum.toDouble/lon ))
            }
        }


        sc.stop()
    }

    //用户访问动作表
    case class UserVisitAction(
              date: String,//用户点击行为的日期
              user_id: Long,//用户的ID
              session_id: String,//Session的ID
              page_id: Long,//某个页面的ID
              action_time: String,//动作的时间点
              search_keyword: String,//用户搜索的关键词
              click_category_id: Long,//某一个商品品类的ID
              click_product_id: Long,//某一个商品的ID
              order_category_ids: String,//一次订单中所有品类的ID集合
              order_product_ids: String,//一次订单中所有商品的ID集合
              pay_category_ids: String,//一次支付中所有品类的ID集合
              pay_product_ids: String,//一次支付中所有商品的ID集合
              city_id: Long
      )//城市 id
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值