​LeetCode解法汇总2673. 使二叉树所有路径值相等的最小代价

目录链接:

力扣编程题-解法汇总_分享+记录-CSDN博客

GitHub同步刷题项目:

https://github.com/September26/java-algorithms

原题链接:. - 力扣(LeetCode)


描述:

给你一个整数 n 表示一棵 满二叉树 里面节点的数目,节点编号从 1 到 n 。根节点编号为 1 ,树中每个非叶子节点 i 都有两个孩子,分别是左孩子 2 * i 和右孩子 2 * i + 1 。

树中每个节点都有一个值,用下标从 0 开始、长度为 n 的整数数组 cost 表示,其中 cost[i] 是第 i + 1 个节点的值。每次操作,你可以将树中 任意 节点的值 增加 1 。你可以执行操作 任意 次。

你的目标是让根到每一个 叶子结点 的路径值相等。请你返回 最少 需要执行增加操作多少次。

注意:

  • 满二叉树 指的是一棵树,它满足树中除了叶子节点外每个节点都恰好有 2 个子节点,且所有叶子节点距离根节点距离相同。
  • 路径值 指的是路径上所有节点的值之和。

示例 1:

输入:n = 7, cost = [1,5,2,2,3,3,1]
输出:6
解释:我们执行以下的增加操作:
- 将节点 4 的值增加一次。
- 将节点 3 的值增加三次。
- 将节点 7 的值增加两次。
从根到叶子的每一条路径值都为 9 。
总共增加次数为 1 + 3 + 2 = 6 。
这是最小的答案。

示例 2:

输入:n = 3, cost = [5,3,3]
输出:0
解释:两条路径已经有相等的路径值,所以不需要执行任何增加操作。

提示:

  • 3 <= n <= 105
  • n + 1 是 2 的幂
  • cost.length == n
  • 1 <= cost[i] <= 104

解题思路:

这道题其实是一道递归遍历的题目,只不过应该从叶子节点向上遍历,而不是从根节点向下遍历。

首先,我们分别使用level记录其有多少层,使用abs记录添加多少次。

其次某个节点找到其父节点,只要把相邻两个节点靠前的那个节点i除以2即可得到其父节点位置。

最后,我们可以构建这样的循环,首先遍历最后一层级节点,保证相邻的两个节点值相等,不相等则填平,然后把填平后的值加到其父节点上,构建父节点的权限。

比如题目中的[1,5,2,2,3,3,1]中,最后一层的节点位置是[2^2-1,2^3-1]的范围,比较3,4位置用较大值减去较小值,差值添加到abs中。然后把较大值加到父节点上,比如3,4位置的父节点就是3/2=1。

接下来倒数第二层也是一样的逻辑,直到第二层。

看了官方题解之后,发现其实也没必要按照层级去逆序遍历,只要从后向前遍历其实也一样的,官方题解会更简单。

代码:

class Solution {
public:
    int minIncrements(int n, vector<int> &cost)
    {
        int level = 0;
        n++;
        while (n > 1)
        {
            n = n / 2;
            level++;
        }
        int abs = 0;
        while (level > 1)
        {

            for (int i = pow(2, level - 1) - 1; i < pow(2, level) - 1; i = i + 2)
            {
                int maxNum = max(cost[i], cost[i + 1]);
                int minNum = min(cost[i], cost[i + 1]);
                abs += (maxNum - minNum);
                cost[i / 2] += maxNum;
            }
            level--;
        }
        return abs;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

失落夏天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值