​LeetCode解法汇总2834. 找出美丽数组的最小和

 目录链接:

力扣编程题-解法汇总_分享+记录-CSDN博客

GitHub同步刷题项目:

https://github.com/September26/java-algorithms

原题链接:. - 力扣(LeetCode)


描述:

给你两个正整数:n 和 target 。

如果数组 nums 满足下述条件,则称其为 美丽数组 。

  • nums.length == n.
  • nums 由两两互不相同的正整数组成。
  • 在范围 [0, n-1] 内,不存在 两个 不同 下标 i 和 j ,使得 nums[i] + nums[j] == target 。

返回符合条件的美丽数组所可能具备的 最小 和,并对结果进行取模 109 + 7

示例 1:

输入:n = 2, target = 3
输出:4
解释:nums = [1,3] 是美丽数组。
- nums 的长度为 n = 2 。
- nums 由两两互不相同的正整数组成。
- 不存在两个不同下标 i 和 j ,使得 nums[i] + nums[j] == 3 。
可以证明 4 是符合条件的美丽数组所可能具备的最小和。

示例 2:

输入:n = 3, target = 3
输出:8
解释:
nums = [1,3,4] 是美丽数组。 
- nums 的长度为 n = 3 。 
- nums 由两两互不相同的正整数组成。 
- 不存在两个不同下标 i 和 j ,使得 nums[i] + nums[j] == 3 。
可以证明 8 是符合条件的美丽数组所可能具备的最小和。

示例 3:

输入:n = 1, target = 1
输出:1
解释:nums = [1] 是美丽数组。

提示:

  • 1 <= n <= 109
  • 1 <= target <= 109

解题思路:

首先如果希望和最小,那么一定是从1开始。

我们把target分为两种:

第一种,target>=2*n,这种场景下,最小和就是1到n的累加和。

第二种,假设target是6,n=7。那么组成的可能是[1,5],[2,4]。所以1,2,3,的数组中,如果选择了1就不能选择5,同理4也不能选。所以我们可以选择的部分分为两段,第一段1到3,4到5不能选择,第二段从6开始。

所以第一段范围是[1,1 + leftLength - 1],第二段范围是[target,target + n - leftLength - 1],leftLength=target/2。

代码:

class Solution {
public:
    int minimumPossibleSum(int n, int target)
    {
        if (target >= 2 * n)
        {
            return getFragmentSum(1, n) % 1000000007;
        }
        int leftLength = target / 2;
        int leftStart = 1;
        int leftEnd = leftStart + leftLength - 1;
        int rightStart = target;
        int rightEnd = rightStart + n - leftLength - 1;
        return (getFragmentSum(leftStart, leftEnd) + getFragmentSum(rightStart, rightEnd)) % 1000000007;
    }

    long long getFragmentSum(long long start, long long end)
    {
        return (start + end) * (end - start + 1) / 2;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

失落夏天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值