F - LIS on Tree

1 篇文章 0 订阅

F - LIS on Tree

解:对树跑一遍dfs,同时维护一个d数组,这个d数组表示到当前结点的最长权值递增子序列的排列,数组大小为序列长度,维护d数组是基于贪心的LIS做法,即每次二分查找当前权值在d数组中要插入的位置,更新d数组,继续向子树遍历。要注意的是,我们要在结点回溯的时候需要把d数组中更改过的元素给还原。

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for(int i = a;i<n;i++)
#define per(i,a,n) for(int i = n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define eb emplace_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define yes cout<<"YES"<<'\n';
#define no cout<<"NO"<<'\n';
#define endl '\n';
typedef vector<int> VI;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef double db;
mt19937 mrand(random_device{}());
const ll MOD=1000000007;
int rnd(int x) {return mrand() % x;}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;};
ll lcm(int a,int b){return a*b/gcd(a,b);};

const int N=200010;
int n;
int a[N],d[N],ans[N];
VI e[N];

void dfs(int x,int fa){
	int k=lower_bound(d+1,d+n+1,a[x])-d;
	int t=d[k];
	d[k]=a[x];
	ans[x]=max(ans[fa],k);
	for(auto ed:e[x]){
		if(ed==fa) continue;
		dfs(ed,x);
	}
	d[k]=t;
}

int main(){
	ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
	cin>>n;
	rep(i,1,n+1) cin>>a[i];
	rep(i,1,n){
		int u,v;
		cin>>u>>v;
		e[u].pb(v);
		e[v].pb(u);
	}
	memset(d,0x3f,sizeof d);
	memset(ans,0,sizeof ans);
	dfs(1,0);
	rep(i,1,n+1) cout<<ans[i]<<endl;
	return 0;
}

时间复杂度:O(nlogn),n为结点个数,logn为二分查找的复杂度。

空间复杂度:O(n)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值