并查集+逆序处理
①先将所有要消除砖块的位置全部置为0,如果位置原本没有砖块,则消去它后一定不会掉落任何砖块,直接记录答案就可。
②预处理最后剩下的整个图,把所有相邻的砖块在并查集中合并。要注意的是,在合并集合的时候,优先把在天花板上的砖块视为根,这样能够判定任意砖块是否是稳定的,之后的合并处理也一样。
③逆序处理hits数组,把原本消除的砖块依次加到图中去,判断它四个相邻位置的砖块所属的连通块是不是稳定的,如果不是稳定的,则需要把这个连通块的砖块个数累加到中间变量t上,因为四个相邻位置的砖块可能其中某几个砖块同属于同一个连通块,因此我们先把这些连通块记录到哈希表中,枚举完四个位置之后再进行累加。
累加之后,判断这个被消除的砖块是不是稳定的,如果是,说明它相邻的原本不稳定的连通块现在连通了,也就是说消去这个位置砖块后,这些连通块的砖块都会掉落,因此记录这个消除位置之后掉落的砖块数为t。
如果这个砖块最终不是稳定的,说明消去它不会掉落任何砖块。
class Solution {
public:
vector<int> p=vector<int>(40010);
vector<int> siz=vector<int>(40010,1);
int n,m;
int dx[4]={0,0,-1,1};
int dy[4]={-1,1,0,0};
int findd(int x){
return p[x]==x?x:p[x]=findd(p[x]);
}
void unionn(int x,int y){
x=findd(x),y=findd(y);
if(x==y) return;
if(x<m) p[y]=x,siz[x]+=siz[y];
else p[x]=y,siz[y]+=siz[x];
}
vector<int> hitBricks(vector<vector<int>>& grid, vector<vector<int>>& hits){
n=grid.size(),m=grid[0].size();
int len=hits.size(),res=0;
vector<int> ans(len,0),vis(len,0);
for(int i=0;i<len;i++){
if(!grid[hits[i][0]][hits[i][1]]) vis[i]=1;
grid[hits[i][0]][hits[i][1]]=0;
}
iota(p.begin(),p.end(),0);
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(grid[i][j]){
for(int k=0;k<4;k++){
int x=i+dx[k],y=j+dy[k];
if(x<0||x>=n||y<0||y>=m||!grid[x][y]) continue;
unionn(i*m+j,x*m+y);
}
}else siz[i*m+j]=0;
}
}
for(int i=len-1;~i;i--){
if(vis[i]) continue;
int t=0;
int x=hits[i][0],y=hits[i][1];
siz[x*m+y]=1;
grid[x][y]=1;
unordered_map<int,int> mp;
for(int j=0;j<4;j++){
int xx=x+dx[j],yy=y+dy[j];
if(xx<0||xx>=n||yy<0|yy>=m||!grid[xx][yy]) continue;
int v=findd(xx*m+yy);
if(v>=m&&!mp.count(v)) mp[v]=siz[v];
unionn(x*m+y,v);
}
if(findd(x*m+y)<m){
for(auto &u:mp){
t+=u.second;
}
ans[i]=t;
}
}
return ans;
}
};
时间复杂度:O(nm·α(nm)+q·α(nm)),n,m分别为网格的长和宽,q为hits数组的长度,α(nm)是并查集操作的复杂度。
空间复杂度:O(nm)。