更多相关内容可查看
玩之前先了解几个关键名词(大佬可省略):Apache POI、EasyExcel、EasyPOI
名词介绍
简单了解,详情可以扒拉官方文档
Apache POI:
官方文档:https://www.w3ccoo.com/apache_poi/apache_poi_overview.html
Apache POI是一个用于在Java程序中读写Microsoft Office文档(如Excel、Word和PowerPoint)的开源库
EasyExcel:
官方文档:https://easyexcel.opensource.alibaba.com/
EasyExcel是一个Java库,用于快速、高效地读写Excel文件
。它特别适合处理大数据量的Excel文件
,相比其他库,EasyExcel在处理大文件时更节省内存,也更简单易用。
EasyPOI
源码地址:https://github.com/jueyue/easypoi
处理Excel文件的Java库,设计得比较简单易用
,使得操作Excel文件的工作变得不那么复杂
场景问题分析解决
百万级或者千万级数据量导入导出的场景面临的一些问题,拆开解决:
导入问题解决方案
内存溢出(分批导入)
问题:传统的Apache POI在读取Excel文件时会创建大量的Java对象
来表示文件中的每一个单元格和行,当数据量超级大,使用传统的POI方式来完成导入会内存溢出
,并且效率会非常低;
解决:EasyExcel通过流式读取和写入数据
,只在内存中处理当前的数据块,避免了一次性加载整个文件,从而有效降低了内存消耗。分批读取读取Excel中的百万级的数据,这一点EasyExcel只需要把它分批的参数3000调大即可。我是用的20w;
EasyExcel底层采用了什么技术解决的这个问题:
- 基于流的API:EasyExcel使用了
流式API
来处理Excel文件。它使用了InputStream和OutputStream来逐步读取和写入数据,而不是一次性将整个文件加载到内存中。这样可以处理数据块,逐步读取和写入文件。- 事件驱动模型:EasyExcel采用了
事件驱动
的方式,特别是在读取时,库会触发事件(如行读取事件),开发者可以在这些事件发生时处理数据。这样,只有当前正在处理的行会被加载到内存中,其他数据仍然保留在文件中。- 按需加载:在读取过程中,EasyExcel只会加载当前需要处理的数据,而不是整个文件。它会在读取数据时
动态地从磁盘加载数据块
,然后处理完这些数据块后将其从内存中清除。- 低级别的文件操作:EasyExcel使用了底层的文件操作技术,如
BufferedInputStream
,来高效地读取文件内容,减少内存占用和提高读取速度。
DB插入(分批插入)
问题:其次就是往DB里插入,怎么去插入这20w条数据,当然不能一条一条的循环,应该批量插入这20w条数据,同样也不能使用Mybatis的批量插入,因为效率也低。可以参考下面链接【Myabtis批量插入和JDBC批量插入性能对比】
解决:使用JDBC+事务的批量操作将数据插入到数据库。(分批读取+JDBC分批插入+手动事务控制)
核心代码:
// EasyExcel的读取Excel数据的API
@Test
public void import2DBFromExcel10wTest() {
String fileName = "D:\\StudyWorkspace\\JavaWorkspace\\java_project_workspace\\idea_projects\\SpringBootProjects\\easyexcel\\exportFile\\excel300w.xlsx";
//记录开始读取Excel时间,也是导入程序开始时间
long startReadTime = System.currentTimeMillis();
System.out.println("------开始读取Excel的Sheet时间(包括导入数据过程):" + startReadTime + "ms------");
//读取所有Sheet的数据.每次读完一个Sheet就会调用这个方法
EasyExcel.read(fileName, new EasyExceGeneralDatalListener(actResultLogService2)).doReadAll();
long endReadTime = System.currentTimeMillis();
System.out.println("------结束读取Excel的Sheet时间(包括导入数据过程):" + endReadTime + "ms------");
}
// 事件监听
public class EasyExceGeneralDatalListener extends AnalysisEventListener<Map<Integer, String>> {
/**
* 处理业务逻辑的Service,也可以是Mapper
*/
private ActResultLogService2 actResultLogService2;
/**
* 用于存储读取的数据
*/
private List<Map<Integer, String>> dataList = new ArrayList<Map<Integer, String>>();
public EasyExceGeneralDatalListener() {
}
public EasyExceGeneralDatalListener(ActResultLogService2 actResultLogService2) {
this.actResultLogService2 = actResultLogService2;
}
@Override
public void invoke(Map<Integer, String> data, AnalysisContext context) {
//数据add进入集合
dataList.add(data);
//size是否为100000条:这里其实就是分批.当数据等于10w的时候执行一次插入
if (dataList.size() >= ExcelConstants.GENERAL_ONCE_SAVE_TO_DB_ROWS) {
//存入数据库:数据小于1w条使用Mybatis的批量插入即可;
saveData();
//清理集合便于GC回收
dataList.clear();
}
}
/**
* 保存数据到DB
*
* @param
* @MethodName: saveData
* @return: void
*/
private void saveData() {
actResultLogService2.import2DBFromExcel10w(dataList);
dataList.clear();
}
/**
* Excel中所有数据解析完毕会调用此方法
*
* @param: context
* @MethodName: doAfterAllAnalysed
* @return: void
*/
@Override
public void doAfterAllAnalysed(AnalysisContext context) {
saveData();
dataList.clear();
}
}
//JDBC工具类
public class JDBCDruidUtils {
private static DataSource dataSource;
/*
创建数据Properties集合对象加载加载配置文件
*/
static {
Properties pro = new Properties();
//加载数据库连接池对象
try {
//获取数据库连接池对象
pro.load(JDBCDruidUtils.class.getClassLoader().getResourceAsStream("druid.properties"));
dataSource = DruidDataSourceFactory.createDataSource(pro);
} catch (Exception e) {
e.printStackTrace();
}
}
/*
获取连接
*/
public static Connection getConnection() throws SQLException {
return dataSource.getConnection();
}
/**
* 关闭conn,和 statement独对象资源
*
* @param connection
* @param statement
* @MethodName: close
* @return: void
*/
public static void close(Connection connection, Statement statement) {
if (connection != null) {
try {
connection.close();
} catch (SQLException e) {
e.printStackTrace();
}
}
if (statement != null) {
try {
statement.close();
} catch (SQLException e) {
e.printStackTrace();
}
}
}
/**
* 关闭 conn , statement 和resultset三个对象资源
*
* @param connection
* @param statement
* @param resultSet
* @MethodName: close
* @return: void
*/
public static void close(Connection connection, Statement statement, ResultSet resultSet) {
close(connection, statement);
if (resultSet != null) {
try {
resultSet.close();
} catch (SQLException e) {
e.printStackTrace();
}
}
}
/*
获取连接池对象
*/
public static DataSource getDataSource() {
return dataSource;
}
}
# druid.properties配置
driverClassName=oracle.jdbc.driver.OracleDriver
url=jdbc:oracle:thin:@localhost:1521:ORCL
username=mrkay
password=******
initialSize=10
maxActive=50
maxWait=60000
// Service中具体业务逻辑
/**
* 测试用Excel导入超过10w条数据,经过测试发现,使用Mybatis的批量插入速度非常慢,所以这里可以使用 数据分批+JDBC分批插入+事务来继续插入速度会非常快
*
* @param
* @MethodName: import2DBFromExcel10w
* @return: java.util.Map<java.lang.String, java.lang.Object>
*/
@Override
public Map<String, Object> import2DBFromExcel10w(List<Map<Integer, String>> dataList) {
HashMap<String, Object> result = new HashMap<>();
//结果集中数据为0时,结束方法.进行下一次调用
if (dataList.size() == 0) {
result.put("empty", "0000");
return result;
}
//JDBC分批插入+事务操作完成对10w数据的插入
Connection conn = null;
PreparedStatement ps = null;
try {
long startTime = System.currentTimeMillis();
System.out.println(dataList.size() + "条,开始导入到数据库时间:" + startTime + "ms");
conn = JDBCDruidUtils.getConnection();
//控制事务:默认不提交
conn.setAutoCommit(false);
String sql = "insert into ACT_RESULT_LOG (onlineseqid,businessid,becifno,ivisresult,createdby,createddate,updateby,updateddate,risklevel) values";
sql += "(?,?,?,?,?,?,?,?,?)";
ps = conn.prepareStatement(sql);
//循环结果集:这里循环不支持"烂布袋"表达式
for (int i = 0; i < dataList.size(); i++) {
Map<Integer, String> item = dataList.get(i);
ps.setString(1, item.get(0));
ps.setString(2, item.get(1));
ps.setString(3, item.get(2));
ps.setString(4, item.get(3));
ps.setString(5, item.get(4));
ps.setTimestamp(6, new Timestamp(System.currentTimeMillis()));
ps.setString(7, item.get(6));
ps.setTimestamp(8, new Timestamp(System.currentTimeMillis()));
ps.setString(9, item.get(8));
//将一组参数添加到此 PreparedStatement 对象的批处理命令中。
ps.addBatch();
}
//执行批处理
ps.executeBatch();
//手动提交事务
conn.commit();
long endTime = System.currentTimeMillis();
System.out.println(dataList.size() + "条,结束导入到数据库时间:" + endTime + "ms");
System.out.println(dataList.size() + "条,导入用时:" + (endTime - startTime) + "ms");
result.put("success", "1111");
} catch (Exception e) {
result.put("exception", "0000");
e.printStackTrace();
} finally {
//关连接
JDBCDruidUtils.close(conn, ps);
}
return result;
}
导出问题解决方案
问题:如果一次性查询数据库百万条数据会很慢
解决:
- 首先在查询数据库层面,需要分批进行查询(我使用的是每次查询20w)
- 每查询一次结束,就使用EasyExcel工具将这些数据写入一次
- 当一个Sheet写满了100w条数据,开始将查询的数据写入到另一个Sheet中
- 如此循环直到数据全部导出到Excel完毕
注意:
1、我们需要计算Sheet个数,以及循环写入次数。特别是最后一个Sheet的写入次数
因为你不知道最后一个Sheet选哟写入多少数据,可能是100w,也可能是25w因为我们这里的300w只是模拟数据,有可能导出的数据比300w多也可能少
2、我们需要计算写入次数,因为我们使用的分页查询,所以需要注意写入的次数。
其实查询数据库多少次就是写入多少次
核心代码:
//导出逻辑代码
public void dataExport300w(HttpServletResponse response) {
{
OutputStream outputStream = null;
try {
long startTime = System.currentTimeMillis();
System.out.println("导出开始时间:" + startTime);
outputStream = response.getOutputStream();
ExcelWriter writer = new ExcelWriter(outputStream, ExcelTypeEnum.XLSX);
String fileName = new String(("excel100w").getBytes(), "UTF-8");
//title
Table table = new Table(1);
List<List<String>> titles = new ArrayList<List<String>>();
titles.add(Arrays.asList("onlineseqid"));
titles.add(Arrays.asList("businessid"));
titles.add(Arrays.asList("becifno"));
titles.add(Arrays.asList("ivisresult"));
titles.add(Arrays.asList("createdby"));
titles.add(Arrays.asList("createddate"));
titles.add(Arrays.asList("updateby"));
titles.add(Arrays.asList("updateddate"));
titles.add(Arrays.asList("risklevel"));
table.setHead(titles);
//模拟统计查询的数据数量这里模拟100w
int count = 3000001;
//记录总数:实际中需要根据查询条件进行统计即可
Integer totalCount = actResultLogMapper.findActResultLogByCondations(count);
//每一个Sheet存放100w条数据
Integer sheetDataRows = ExcelConstants.PER_SHEET_ROW_COUNT;
//每次写入的数据量20w
Integer writeDataRows = ExcelConstants.PER_WRITE_ROW_COUNT;
//计算需要的Sheet数量
Integer sheetNum = totalCount % sheetDataRows == 0 ? (totalCount / sheetDataRows) : (totalCount / sheetDataRows + 1);
//计算一般情况下每一个Sheet需要写入的次数(一般情况不包含最后一个sheet,因为最后一个sheet不确定会写入多少条数据)
Integer oneSheetWriteCount = sheetDataRows / writeDataRows;
//计算最后一个sheet需要写入的次数
Integer lastSheetWriteCount = totalCount % sheetDataRows == 0 ? oneSheetWriteCount : (totalCount % sheetDataRows % writeDataRows == 0 ? (totalCount / sheetDataRows / writeDataRows) : (totalCount / sheetDataRows / writeDataRows + 1));
//开始分批查询分次写入
//注意这次的循环就需要进行嵌套循环了,外层循环是Sheet数目,内层循环是写入次数
List<List<String>> dataList = new ArrayList<>();
for (int i = 0; i < sheetNum; i++) {
//创建Sheet
Sheet sheet = new Sheet(i, 0);
sheet.setSheetName("测试Sheet1" + i);
//循环写入次数: j的自增条件是当不是最后一个Sheet的时候写入次数为正常的每个Sheet写入的次数,如果是最后一个就需要使用计算的次数lastSheetWriteCount
for (int j = 0; j < (i != sheetNum - 1 ? oneSheetWriteCount : lastSheetWriteCount); j++) {
//集合复用,便于GC清理
dataList.clear();
//分页查询一次20w
PageHelper.startPage(j + 1 + oneSheetWriteCount * i, writeDataRows);
List<ActResultLog> reslultList = actResultLogMapper.findByPage100w();
if (!CollectionUtils.isEmpty(reslultList)) {
reslultList.forEach(item -> {
dataList.add(Arrays.asList(item.getOnlineseqid(), item.getBusinessid(), item.getBecifno(), item.getIvisresult(), item.getCreatedby(), Calendar.getInstance().getTime().toString(), item.getUpdateby(), Calendar.getInstance().getTime().toString(), item.getRisklevel()));
});
}
//写数据
writer.write0(dataList, sheet, table);
}
}
// 下载EXCEL
response.setHeader("Content-Disposition", "attachment;filename=" + new String((fileName).getBytes("gb2312"), "ISO-8859-1") + ".xlsx");
response.setContentType("multipart/form-data");
response.setCharacterEncoding("utf-8");
writer.finish();
outputStream.flush();
//导出时间结束
long endTime = System.currentTimeMillis();
System.out.println("导出结束时间:" + endTime + "ms");
System.out.println("导出所用时间:" + (endTime - startTime) / 1000 + "秒");
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
} finally {
if (outputStream != null) {
try {
outputStream.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
}
导入导出的策略
以下几点建议,不管在面试的角度还是架构设计的角度都尽量要考虑到
定时导入导出
批量处理:定时任务通常处理大量数据,因此可以设计批量处理流程。例如,使用定时任务(如Cron)安排在低流量时段进行数据处理。
增量更新:避免每次全量导入或导出,使用增量更新策略,仅处理自上次操作以来发生变化的数据。
数据分片:将数据分成小块进行处理和存储,减少每次操作的负载。例如,按日期或记录ID范围分片处理。
异常处理和恢复:实现任务失败后的重试机制,并记录失败日志,确保任务能够从失败点继续执行。
性能优化:优化数据库查询和写入操作,例如使用批量插入或更新,提高导入导出的效率。
实时导入导出
流式处理:实时数据处理需要即刻反应,因此使用流式处理技术(如Kafka、RabbitMQ)来处理数据流,确保数据能即时处理。
数据缓存:使用缓存机制(如Redis)减少重复操作,提高响应速度,并减轻数据库负担。
实时数据同步:使用数据同步工具或技术(如CDC—Change Data Capture)来实现实时数据更新,将数据及时同步到目标系统。
负载均衡:实现系统负载均衡,确保在高流量情况下系统能够平稳运行,避免单点故障。
监控和报警:实时监控数据流动和处理状态,设立报警机制,及时响应系统异常或数据处理问题。
在数据量不超过1亿的情况下,Mysql和Oracle的性能其实相差不大,超过1亿,Oracle的各方面优势才会明显
EasyPOI
最后浅聊一下EasyPOI的一些内容,他最大的特点就是用起来简单
-
引入依赖:
将 EasyPOI 依赖添加到项目的pom.xml
中(对于 Maven 项目):<dependency> <groupId>cn.afterturn</groupId> <artifactId>easypoi</artifactId> <version>5.0.1</version> </dependency>
-
定义实体类:
创建一个 Java 类来表示 Excel 中的数据结构,并使用 EasyPOI 注解进行配置。例如:import cn.afterturn.easypoi.excel.annotation.Excel; public class Person { @Excel(name = "Name") private String name; @Excel(name = "Age") private int age; // Getters and setters }
-
导出 Excel 文件:
使用 EasyPOI 导出 Excel 文件:import cn.afterturn.easypoi.excel.ExcelExportUtil; import cn.afterturn.easypoi.excel.entity.ExportParams; import org.apache.poi.ss.usermodel.Workbook; public class ExportExample { public static void main(String[] args) { List<Person> list = Arrays.asList(new Person("John", 30), new Person("Jane", 25)); Workbook workbook = ExcelExportUtil.exportExcel(new ExportParams("Person List", "Sheet1"), Person.class, list); try (FileOutputStream fos = new FileOutputStream("person.xlsx")) { workbook.write(fos); } catch (IOException e) { e.printStackTrace(); } } }
-
导入 Excel 文件:
使用 EasyPOI 导入 Excel 文件:import cn.afterturn.easypoi.excel.ExcelImportUtil; import cn.afterturn.easypoi.excel.entity.ImportParams; import java.io.FileInputStream; import java.io.IOException; import java.util.List; public class ImportExample { public static void main(String[] args) { ImportParams params = new ImportParams(); params.setHeadRows(1); try (FileInputStream fis = new FileInputStream("person.xlsx")) { List<Person> list = ExcelImportUtil.importExcel(fis, Person.class, params); for (Person person : list) { System.out.println(person.getName() + ": " + person.getAge()); } } catch (Exception e) { e.printStackTrace(); } } }
小数据量的导入导出就可以酌情怎么方便怎么来