3003 枚举子集
枚举子集1
描述
给定一个正整数 ( n )。列举出从数字 ( 1 ) 到 ( n ) 中所有可能的数的组合。每个组合可以被认为是一个子集。
要求:
- 对于每个子集,其中的数字必须按升序排列。
- 若集合前 k-1 个数的选取情况相同,则取了第 k 个数的在前.
输入
- 输入仅包含一个正整数 n ( 1 <= n <= 20 )
输出
- 每行输出一个子集,其中的数字用空格隔开。每行最后有一个空格。
- 所有子集输出按照字典序进行排序后输出。
输入样例 1
4
输出样例 1
1 2 3 4 1 2 3 1 2 4 1 2 1 3 4 1 3 1 4 1 2 3 4 2 3 2 4 2 3 4 3 4
提示
#include <iostream>
using namespace std;
int n;
bool b[50]; //b[i]代表第i个元素是否选中;默认0
void fun(int step) {//没有返回类型,函数用void;定义递归步数;
if(step>n) {//递归停止,终止条件
for(int i=1;i<=n;i++)
if(b[i]==1) cout<<i<<" ";
cout<<endl;
return;
}
b[step]=true;
fun(step+1);
b[step]=false;
fun(step+1);
}
int main() {
cin >> n;
fun(1);
return 0;
}
原理:
天平平衡问题
天平平衡
描述
你有n个重量不同的砝码和一个天平, 每个砝码可以放在天平的左盘或者右盘或者不放.
砝码重量为w1,w2,...,wn
问有多少种放置砝码的方式,使得天平平衡?
两边均为空,均不放砝码,也算一种方案。
输入
第1行, 1个正整数 n
第2行, n 个正整数w1,w2,...,wn, 以空格分隔
输出
天平平衡的放置方案数
输入样例 1
5 1 2 3 5 6
输出样例 1
13
提示
1 < n < 10, 1 < w_i < 100
//天平平衡题,放、不放、平衡三种状态。
#include <iostream>
using namespace std;
int ans;//默认为0
int n;
int b[50]; //-1,0,1
int w[50];
void fun(int step) {//没有返回类型,函数用void;定义递归步数;
if(step>n) {//递归停止,终止条件
//计算所以b[i]*wi和=0平衡
int sum=0;
for(int i=1;i<=n;i++) sum+=b[i]*w[i];
if(sum==0) ans++;
return;
}
b[step]=1;
fun(step+1);
b[step]=0;
fun(step+1);
b[step]=-1;
fun(step+1);
}
int main() {
cin >> n;
for(int i=1;i<=n;i++) cin>>w[i];
fun(1);
cout<<ans<<endl;
return 0;
}
整数划分1
描述
给定两个正整数 ( n ) 和 ( k )。列举所有可能的方式将整数 ( n ) 划分为 ( k ) 个正整数的总和,并按要求的顺序输出。
注意:
- 在一个组合中,数字应按照从小到大的顺序进行排序。
- 若两种方法中前 ( k-1 ) 个数相同,则第 ( k ) 个数更小的应该先输出。
- n,k均小于20
输入
- 第一行输入两个正整数 ( n ) 和 ( k ),由空格分隔。
输出
- 每行输出一个组合,其中的数字用空格隔开。
输入样例 1
6 3
输出样例 1
1 1 4 1 2 3 2 2 2
//天平平衡题,放、不放、平衡三种状态。
#include <iostream>
using namespace std;
int a[50];
int n,k;//a[i]代表第i个数的取值
void fun(int step,int last) {//step记录第i个数,last记录上一个取值
if(step>k) {//统计k个数的和是否为n
int sum=0;
for(int i=1;i<=k;i++) sum+=a[i];
if(sum==n) {//如果k个数的和==n,符合要求,输出结果
for (int i=1;i<=k;i++) cout << a[i] << " ";
cout << endl;
}
return;//k个数则结束;
}
//选择数字
for(int i=last;i<=n;i++) {
a[step]=i;//当前数字设置为状态i
fun(step + 1,i);
}
}
int main() {
cin >> n>>k;//输入参数
fun(1,1);//调用函数
return 0;
}