题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5438
题目大意:有p个池塘,每个池塘有个价值,他们之间有水管相连。如果一个池塘相连的水管少于2根,就可以被移除,否则不行。问最后直到不能再有池塘被移除的时候,所有池塘都组成的联通块中,数目为奇数的池塘的价值和。
思路:当池塘不能再被移除的时候,剩下的池塘肯定练成了环,所以我们要求的就是环的数目以及他们的权值和。可以利用并查集算出这个环里面的点的数目以及权值和。对于池塘的移除,其实就是把度小于2的点全部删去,其实就是拓扑排序。
我这里的是模拟度的删除,不是写拓扑排序的写法,不过效果一样(一开始没意识到是拓扑排序= =)
注意这里答案要用long long存,否则会Wa。
代码:
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
queue<int>qu;
struct node {
int to,next;
}edge[1000005];
int tot,head[100005];
int father[100005];
void add(int a,int b)
{
edge[tot].to=b;
edge[tot].next=head[a];
head[a]=tot++;
}
int findroot(int x)
{
int r=x;
while(r!=father[r])
r=father[r];
return r;
}
int v[100005],a[100005],b[100005],indegree[100005],vis[100005];
__int64 sum[100005],r[100005];
int main()
{
int T,i,j,k,p,m;
scanf("%d",&T);
int f;
while(T--)
{
f=0;
tot=0;
memset(indegree,0,sizeof(indegree));
memset(head,-1,sizeof(head));
memset(vis,0,sizeof(vis));
scanf("%d%d",&p,&m);
for(i=1;i<=p;i++)
{
scanf("%d",&v[i]);
}
for(i=1;i<=m;i++)
{
scanf("%d%d",&a[i],&b[i]);
add(a[i],b[i]);
add(b[i],a[i]);
indegree[a[i]]++;
indegree[b[i]]++;
}
f=1;
while(f)
{
f=0;
for(i=1;i<=p;i++)
{
if(vis[i])continue;
if(indegree[i]<2)
{
for(j=head[i];j!=-1;j=edge[j].next)
indegree[edge[j].to]--;
if(indegree[i]==0)vis[i]=1;
else {indegree[i]--;
vis[i]=1;
}
f=1;
}
}
}
for(i=1;i<=p;i++)
{
father[i]=i;
sum[i]=v[i];
r[i]=1;
}
for(i=1;i<=m;i++)
{
if(!vis[a[i]]&&!vis[b[i]])
{
int fx=findroot(a[i]);
int fy=findroot(b[i]);
if(fx!=fy)
{
father[fx]=fy;
sum[fy]+=sum[fx];
r[fy]+=r[fx];
}
}
}
__int64 ans=0;
for(i=1;i<=p;i++)
{
if(father[i]==i&&!vis[i]&&r[i]%2)
{
ans+=sum[i];
}
}
printf("%I64d\n",ans);
}
}
/*
7
7 7
1 2 3 4 5 6 7
1 2
1 3
3 4
2 4
2 5
2 7
1 5
4 5
1 2 3 4
1 2
2 3
3 4
4 1
2 4
*/