问题链接:1014装箱问题
题目描述 Description
有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数)。
要求n个物品中,任取若干个装入箱内,使箱子的剩余空间为最小。
输入描述 Input Description
一个整数v,表示箱子容量
一个整数n,表示有n个物品
接下来n个整数,分别表示这n 个物品的各自体积
输出描述 Output Description
一个整数,表示箱子剩余空间。
样例输入 Sample Input
24
6
8
3
12
7
9
7
样例输出 Sample Output
0
数据范围及提示 Data Size & Hint
问题分析:
首先想到的是用一个二维数组f[i][j]来表示:前i个物品装入容量为j的箱子能获得的最大体积。当前容量为j时,若i不放入,则为f[i-1][j];若i放入,则为f[i-1][j-a[i]]+a[i]。即状态转移方程:f[i][j]=max(f[i-1][j],f[i-1][j-a[i]]+a[i]) 。
其中,f[i-1][j-a[i]]+a[i]理解为:若第i个物品放入,则需要找前(i-1)个物品放入后还有(j-a[i])的容量的地方放入体积为a[i]物品i,这样才能使放进去i后容量为j。
#include <iostream>
using namespace std;
ac
//f[i][j],表示前i个物品装入容量为j的箱子能获得的最大体积
// f[i][j]=max(f[i-1][j],f[i-1][j-a[i]]+a[i])
int a[32];
int f[35][25000];
int main()
{
int n,v;
cin>>v>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=v;j++)
{
if(j<a[i])//当前容量j<当前所要装入的物品体积时不再装入
{
f[i][j]=f[i-1][j];
}
else
{
f[i][j]=max(f[i-1][j],f[i-1][j-a[i]]+a[i]);
}
}
}
cout<<v-f[n][v]<<endl;
return 0;
}
上面的方法占用内存较大,还可以使用一位数组的方法。
对于每一个物品i,都存在放入箱子和不放入箱子两种情况。当前箱子剩余容量为j时,若i放入,则为(f[j-a]+a);若i不放入,则为f[j];因此,状态转移方程为:f[j] = max(f[j], f[j-a]+a)。
该方法与上述方法相反,上述方法为容量依次递增在可以放下当前物品时找最大值,该方法是容量递减保证剩余容量可以放下该物品时取当前容量可以放物品的最大值,实质是一样的。
#include <iostream>
#include <algorithm>
using namespace std;
//ac
int f[20005]={0};
int main()
{
int n,v;
cin>>v>>n;
int a;
for(int i=1;i<=n;i++)
{
cin>>a;
for(int j=v;j>=a;j--)
{
f[j]=max(f[j],f[j-a]+a);
}
}
cout<<v-f[v]<<endl;
return 0;
}
还尝试了一下暴力搜索,用深搜也可以解决,如下:
#include <iostream>
using namespace std;
ac
int a[32];
int inf=0xfffffff;
int n,v;
void dfs(int rest,int i)//剩余容量,第i个物品
{
if(i>n+1||rest<0)
{
return ;
}
if(rest<inf)//保证求出的是容量剩余的最小值
{
inf=rest;
}
dfs(rest-a[i],i+1);//放入i
dfs(rest,i+1);//不放入i
}
int main()
{
cin>>v>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
dfs(v,1);
cout<<inf<<endl;
return 0;
}