自然语言
文章平均质量分 90
呆呆有库
我很懒,还没有添加任何简介
展开
-
LightGBM详细
LightGBMGBDT是一个长久不衰的模型,他的思想是什么?它的思想就是将多个弱分类器迭代训练得到最优的模型,训练效果好,不易过拟合等等的有点,那么XGB就是典型的一个GBDT的实现。首先回顾一下XGB,它的核心思想就是说,是属于GBDT的一个延申,因此它的模型也是加法模型,由多个弱分类器相加的结果,那么在构成弱分类器的时候,首先需要对特征值进行预排序,然后便利所有的切分点,然后计算每个切分点的一个增益,最后找到最优的分裂点进行数据分裂成左右子树。XGB的优缺点:优点:能够原创 2021-12-17 11:22:38 · 1229 阅读 · 0 评论 -
LDA主题模型
LDA主题模型导入:朴素贝叶斯的文本分类问题:一个问题,现在由M个数据,一些被标记成垃圾邮件,一些被标记成非垃圾邮件,现在又来了一个新的数据,那么这个新的数据被标记成垃圾邮件或者非垃圾邮件的概率。朴素贝叶斯的两个基础:条件独立每个特征的重要性都是一样的分析:垃圾邮件有两种:C1,C2建立词汇表:1.使用现有的一个单词词典 2.将所有的邮件中出现的单词都统计出来,得到词典,计数为N这时每个邮件m都可以映射为一个N维的向量X;如果说每个单词一个单词wi在m这个文档中出现过,那么记作xi为原创 2021-12-17 11:15:04 · 1209 阅读 · 0 评论