LeetCode 329.矩阵中的最长递增路径

LeetCode 329.矩阵中的最长递增路径

题目:

给定一个 m x n 整数矩阵 matrix ,找出其中 最长递增路径 的长度。

对于每个单元格,你可以往上,下,左,右四个方向移动。 你 不能 在 对角线 方向上移动或移动到 边界外(即不允许环绕)。

示例 1:

输入:matrix = [[9,9,4],[6,6,8],[2,1,1]]
输出:4 
解释:最长递增路径为 [1, 2, 6, 9]。

示例 2:


输入:matrix = [[3,4,5],[3,2,6],[2,2,1]]
输出:4 
解释:最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。
示例 3:

输入:matrix = [[1]]
输出:1

记忆化深搜:

以每个单元格为起点开始搜索,找到上下左右能到的最大长度就是以当前单元格为起点的最大长度,然后再在所有单元格找最大值即可

class Solution {
public:

    int longestIncreasingPath(vector <vector<int>> &matrix) {
        int Map[210][210] = {0};//每个点的最短路径
        int m = matrix.size();
        int n = matrix[0].size();
        int Max = 0;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                Max = max(dfs(matrix, m, n, i, j, Map), Max);
            }
        }
        return Max;
    }

    int dfs(vector <vector<int>> &matrix, int m, int n, int x, int y, int Map[210][210]) {
        if (Map[x][y]) return Map[x][y];
        int val = 0;
        int mark[][2] = {{0,  1},
                         {0,  -1},
                         {1,  0},
                         {-1, 0}};
        for (int i = 0; i < 4; i++) {
            int tx = x + mark[i][0];
            int ty = y + mark[i][1];
            if (tx >= 0 && tx < m && ty >= 0 && ty < n && matrix[tx][ty] < matrix[x][y]) {
                val = max(val, dfs(matrix, m, n, tx, ty, Map));
            }
        }
        Map[x][y] = val + 1;
        return Map[x][y];
    }
};

在这里插入图片描述

动态规划:

d p [ i ] [ j ] dp[i][j] dp[i][j]为 以 m a t r i x [ i ] [ j ] matrix[i][j] matrix[i][j]为终点的最大递增序列
d p [ i ] [ j ] = m a x ( m a x ( d p [ i − 1 ] [ j ] , d p [ i + 1 ] [ j ] ) , m a x ( d p [ i ] [ j − 1 ] , d p [ i ] [ j + 1 ] ) ) + 1 ( m a t r i x [ i + − 1 ] [ j + − 1 ] < m a t r i x [ i ] [ j ] ) dp[i][j]=max(max(dp[i-1][j],dp[i+1][j]),max(dp[i][j-1],dp[i][j+1]))+1\\ (matrix[i+-1][j+-1]<matrix[i][j]) dp[i][j]=max(max(dp[i1][j],dp[i+1][j]),max(dp[i][j1],dp[i][j+1]))+1(matrix[i+1][j+1]<matrix[i][j])
所以从 m a t r i x matrix matrix排序之后从小到大 d p dp dp

然后再 m a t r i x [ i ] [ j ] matrix[i][j] matrix[i][j]的上下左右找到值小于 m a t r i x [ i ] [ j ] matrix[i][j] matrix[i][j] d p [ i + − 1 ] [ j + − 1 ] dp[i+-1][j+-1] dp[i+1][j+1]的最大值加一就是当前 d p [ i ] [ j ] dp[i][j] dp[i][j]的值

因为是从小到大 d p dp dp的,所以上下左右小于 m a t r i x [ i ] [ j ] matrix[i][j] matrix[i][j]的单元格一定被算过

class Solution {
public:
    struct A {
        int x;
        int y;
        int val;
    };

    static bool is_A(struct A a, struct A b) {
        return a.val < b.val;
    }

    int longestIncreasingPath(vector <vector<int>> &matrix) {
        int m = matrix.size();
        int n = matrix[0].size();
        int len = 0;
        struct A arr[40010];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                arr[len].x = i;
                arr[len].y = j;
                arr[len].val = matrix[i][j];
                len++;
            }
        }
        sort(arr, arr + len, is_A);
        int dp[210][210] = {0};
        int Max = 0;
        int mark[][2] = {{0,  1},
                         {0,  -1},
                         {-1, 0},
                         {1,  0}};
        for (int i = 0; i < len; i++) {
            int M = 0;
            for (int j = 0; j < 4; j++) {
                int tx = arr[i].x + mark[j][0];
                int ty = arr[i].y + mark[j][1];
                if (tx >= 0 && ty >= 0 && tx < m && ty < n && matrix[tx][ty] < matrix[arr[i].x][arr[i].y]) {
                    M = max(M, dp[tx][ty]);
                }
            }
            dp[arr[i].x][arr[i].y] = 1 + M;
            Max = max(Max, dp[arr[i].x][arr[i].y]);
        }

        return Max;
    }
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值