《机器学习线性代数基础:Python语言描述》读书笔记----矩阵与空间映射

矩阵其实描述了空间中的映射

矩阵与空间映射

由于矩阵乘法的作用,原始向量的空间位置甚至其所在空间的维度和形状都发生了改变,这便是矩阵乘法的空间映射作用。
A x = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] [ x 1 x 2 ⋮ x n ] = [ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n ⋮ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n ] = x 1 [ a 11 a 21 ⋮ a m 1 ] + ⋯ + x n [ a 1 n a 2 n ⋮ a m n ] Ax = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{bmatrix} =\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n\end{bmatrix} =x_1\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} +\cdots+ x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} Ax=a11a21am1a12a22am2a1na2namnx1x2xn=a11x1+a12x2++a1nxna21x1+a22x2++a2nxnam1x1+am2x2++amnxn=x1a11a21am1++xna1na2namn

降维与升维

根据向量所乘矩阵的尺寸大小,向量可能会被映射到与原来相比低的维度空间中,或着被映射到更高维的空间中。

降维

当式1中,当m<n时,矩阵A的行数小于列数。可以发现投影后,x被转换到了一个维数更低的新空间的新位置中。

换言之,在这种情况下矩阵A压缩了原始空间 R n R^n Rn

但新的空间的维数并不一定就是 R m R^m Rm,这个在后面会统一说明。

升维

当式1中,当m>n时,矩阵A的行数小于列数。可以发现投影后,x被转换到了一个维数更”高“的新空间的新位置中。

从结果上看,x经矩阵A映射后维数提高了,但并没有由原始向量x所构成的空间 R n R^n Rn变成了维数更高的空间。更具A的情况,甚至到了一个更低维度的空间。

定义:一个矩阵的秩是其非零子式的最高阶数,一个向量组的秩则是其最大无关组所含的向量个数。

决定经过矩阵乘法后的新空间的就是算法A的秩,因为秩决定了算法A可以描述的空间大小。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值