48 旋转图像
题目理解
将n*n的二维矩阵,顺时针旋转90°,输出旋转后的矩阵。要求直接修改输入的矩阵,即不增加额外的空间复杂度。
思路
①可以观察到,数组顺时针旋转后,第i行元素成为第n-1-i列元素,原先在第几列现在就在第几行。即:(i,j)->(j,n-1-i),以此类似,原先为(j,n-1-i)的元素变为(n-1-i,n-1-j),接着(n-1-i,n-1-j)->(n-1-j,i)->(i,j),一次循环结束。每次变化4个值,总循环的次数为n^2/4。
②第二种思路是先把数组上下翻转,(i,j)->(n-1-i,j),然后再沿对角线翻转,(n-1-i,j)->(j,n-1-i),与①结果相同。
代码
①
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n=matrix.size();
for(int i=0;i<n/2;i++)
for(int j=0;j<(n+1)/2;j++){
int temp=matrix[i][j];
swap(temp,matrix[j][n-1-i]);
swap(temp,matrix[n-1-i][n-1-j]);
swap(temp,matrix[n-1-j][i]);
matrix[i][j]=temp;
}
}
};
②
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n=matrix.size();
for(int i=0;i<n/2;i++)
for(int j=0;j<n;j++)
swap(matrix[i][j],matrix[n-1-i][j]);
for(int i=0;i<n;i++)
for(int j=0;j<i;j++)
swap(matrix[i][j],matrix[j][i]);
}
};
303 区域和检索
题目理解
数组从i~j元素的和,包括i,j元素,需要重复调用sumRange函数,因此要尽可能降低时间复杂度。
思路
前缀和,时间复杂度O(1)
初始化时,对数组进行预处理,用新数组存储当前元素之前的元素和,这样在调用sumRange函数时,只需新数组第j个元素-第i个元素即为所求。
代码
class NumArray {
public:
vector<int> sums;
NumArray(vector<int>& nums) {
int n=nums.size();
sums.resize(n+1);
for(int i=0;i<n;i++)
sums[i+1]=sums[i]+nums[i];
}
int sumRange(int i, int j) {
return sums[j+1]-sums[i];
}
};
/**
* Your NumArray object will be instantiated and called as such:
* NumArray* obj = new NumArray(nums);
* int param_1 = obj->sumRange(i,j);
*/
304 二维区域和检索
思路
和前题类似,由一维变到了二维,一种方法是将每行的前缀和存下来,再求子矩形范围内元素的总和。
第二种思路,二维前缀和,sums(i,j)为右下角为(i,j)的范围内元素和,则所求左上角为 (row1, col1) ,右下角为 (row2, col2),元素和为sums (row2, col2)-sums(row1-1,col2)-sums(row2,col1-1)+sums(row1-1,col1-1)。
代码
class NumMatrix {
public:
vector<vector<int>> sums;
NumMatrix(vector<vector<int>>& matrix) {
int m=matrix.size();
if(m){
int n=matrix[0].size();
sums.resize(m+1,vector<int>(n+1));
for(int i=1;i<m+1;i++)
for(int j=1;j<n+1;j++){
sums[i][j]=sums[i-1][j]+sums[i][j-1]-sums[i-1][j-1]+matrix[i-1][j-1];
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
int sum=0;
sum=sums[row2+1][col2+1]-sums[row1][col2+1]-sums[row2+1][col1]+sums[row1][col1];
return sum;
}
};
/**
* Your NumMatrix object will be instantiated and called as such:
* NumMatrix* obj = new NumMatrix(matrix);
* int param_1 = obj->sumRegion(row1,col1,row2,col2);
*/
238 除自身之外数组的乘积
题目理解
output[i]为数组中除nums[i]外其他元素的乘积。
思路
考虑用两个数组,类似前缀和,分别存储当前元素之前的积、当前元素之后的积,output[i]即为两个数组i位置元素相乘。
可以优化,不用再新建数组,用output存储当前元素之前的元素和,再从最右边元素开始累乘,与相应的output[i]相乘。
代码
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int n=nums.size();
vector<int> preSum(n);
vector<int> afSum(n);
vector<int> output(n);
preSum[0]=1;
afSum[n-1]=1;
for(int i=1;i<n;i++)
preSum[i]=preSum[i-1]*nums[i-1];
for(int i=n-2;i>=0;i--)
afSum[i]=afSum[i+1]*nums[i+1];
for(int i=0;i<n;i++)
output[i]=preSum[i]*afSum[i];
return output;
}
};
class Solution {
public:
vector<int> productExceptSelf(vector<int>& nums) {
int n=nums.size();
vector<int> output(n);
output[0]=1;
for(int i=1;i<n;i++)
output[i]=output[i-1]*nums[i-1];
int m=1;
for(int i=n-1;i>=0;i--){
output[i]*=m;
m*=nums[i];
}
return output;
}
};
520 检测大写字母
思路
将字符型中小写字符计数,n为字符串长度。
首先考虑首字母是否大写,如果大写,则小写字母数只有等于n-1或等于0,才返回真;如果首字母不是大写,则小写字母需等于n,返回真。
c++中有库函数isupper©可直接判断c是否为大写,大写返回真。
代码
class Solution {
public:
bool detectCapitalUse(string word) {
int n=word.size();
int count=0;
for(auto c:word)
if(islower(c))
count++;
if(isupper(word[0]))
{
if(count==n-1||count==0)
return true;
}else if(count==n)
return true;
return false;
}
};
14 最长公共前缀
思路
纵向比较,依次比较每个字符串的每个字符,用s记录公共部分,只要不一样就输出s。
代码
class Solution {
public:
string longestCommonPrefix(vector<string>& strs) {
string s;
if(strs.size()){
for(int i=0;i<strs[0].size();i++)
{
int temp=strs[0][i];
for(auto c:strs){
while(c[i]!=temp)
return s;
}
s+=temp;
}
}
return s;
}
};