最小树形图,是指有向图的最小生成树。简单的来说,求一个图G0的最小树形图,先求出最短弧集合E0(从所以以vi为终点的弧中取一条最短的),若E0不存在(对于一给点vi没有入边),则图的最小树形图不存在。否则E0存在且不含有向环,则E0就是T0(最小树形图)中所有的边。如果存在且含有向环,则收缩成有向环为一点u,并形成图G1,继续求G1的最小树形图知道Gi,若Gi无最小树形图,则图G0也不存在最小树形图,存在最小树形图Ti就逐层展开得到T0.
基本算法是叫 朱刘Edmonds算法:
int ZLEdmonds(int n,int map[maxn][maxn])
{
bool visited[maxn],flag[[maxn];
int pre[maxn];
int sum=0,i,j,k;
for( i=0; i<n; i++){
flag[i]=false;
map[i][i]=INF;
}
pre[0]=0;
while( true){
//求最短弧集合E0。
for( i=1; i<n; i++){
if( flag[i]) continue;
pre[i]=i;
for( j=0; j<n; j++){ //pre[i]保存终点为i的最短弧的起点。
if( !flag[j]&&map[j][i]<map[pre[i]][i])
pre[i]=j;
}
if( pre[i]==i) return -1;
}
//检查E0
for( i=1; i<n; i++){
if( flag[i]) continue;
for( j=0; j<n; j++)
visited[j]=false;
visited[0]=true;
j=i;
do{
visited[j]=true;
j=pre[j];
}while( !visited[j]);
if( !j) continue; //没有找到环。
i=j;//将整个环的权值保存,累计入原图的最小树形图
do{
sum+=map[pre[j]][j];
j=pre[j];
}while( j!=i);
j=i;//对于环上的点有关的边,修改边权
do{
for( k=0; k<n; k++){
if( !flag[k]&&map[k][j]&&map[k][j]<INF&&k!=pre[j])
map[k][j]-=map[pre[j]][j];
}
j=pre[j];
}while( j!=i);
//缩点,将整个环缩成i号点,所有环上的点有关的边转移到点i
for( j=0; j<n; j++){
if( j==i) continue;
for( k=pre[i]; k!=i; k++){
if( map[k][j]<map[i][j])
map[i][j]=map[k][j];
if( map[j][k]<map[j][i])
map[j][i]=map[j][k];
}
}
//标记环上其他的点为被缩掉 下次再找Ei时不参与
for( j=pre[i]; j!=i; j=pre[j])
falg[j]=true;
//当前环缩点结束,形成新的图G',跳出继续求G'的最小树形图 ,累计入sum。
}
if( i==n){
for( i=0; i<n; i++)
if( !flag[i])
sum+=map[pre[i]][i];
break;
}
}
return sum;
}