POJ 1664 分苹果,整数拆解

 这个问题和整数拆解问题是一样的;就是将n拆成不大于m的数的和;

 例如: n=6,m=6;

   6=6;  

   6=5+1;

   6=4+2; 6=4+1+1;

   6=3+3; 6=3+2+1; 6=3+1+1+1;

   6=2+2+2; 6=2+2+1+1; 6=2+1+1+1+1;

   6=1+1+1+1+1+1;

按如下分析:分解函数Split(n,m)

 (1) m > n
在整数划分中实际上最大加数不能大于n,因此在这种情况可以等价为split(n, n);
可用程序表示为if(m > n) return split(n, n);
 (2) m = n
这种情况可用递归表示为split(n, m - 1) + 1,从以上例子中可以看出,就是最大加数为6和小于6的划分之和
 用程序表示为if(m == n) return (split(n, m - 1) + 1);
 (3) m < n
这是最一般的情况,在划分的大多数时都是这种情况。
从上例可以看出,设m = 4,那split(6, 4)的值是最大加数小于4划分数和整数2的划分数的和。因此,split(n, m)可表示为split(n, m - 1) + split(n - m, m)
代码:

#include<iostream>
using namespace std;
int Split(int n,int m) //递归解法 
{
    if(m==1||n==1) return 1;
    if(m>n) return Split(n,n); 
    else if(m==n) return Split(n,m-1)+1; 
    else return Split(n-m,m)+Split(n,m-1);
}
int dp[121][121]; //(121,121)大约2*10^9种 
void DP() //动态规划解法 
{
    int i,j;
    memset(dp,0,sizeof(dp));
    for( i=1;i<=12;i++)
     for( j=1;j<=12;j++){
            if(i==1||j==1) dp[i][j]=1;
            else if(j>i) dp[i][j]=dp[i][i];
            else if(i==j) dp[i][j]=dp[i][j-1]+1;
            else dp[i][j]=dp[i-j][j]+dp[i][j-1];
    } 
}
int main()
{
    int T,n,m;
    scanf("%d",&T);
    DP();
    while( T--){
           scanf("%d%d",&n,&m);
           printf("%d\n",dp[n][m]);
    } 
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值