自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(38)
  • 收藏
  • 关注

原创 自动驾驶环境中的车辆目标检测——基于YOLO11-C3k2-RVB的改进算法

YOLO(You Only Look Once)系列算法是目标检测领域的明星算法,以其速度和精度的平衡而闻名。YOLO11作为最新的版本,在保持实时性的同时,进一步提升了检测精度。如图所示,从YOLOv1到YOLO11,算法不断演进,网络结构越来越复杂,性能也越来越强大。YOLO11引入了更多创新的设计,如C3k2模块和RVB注意力机制,这些都为我们的改进算法奠定了基础。

2026-01-14 09:58:46 530

原创 【电力设备检测】YOLO11-LQEHead绝缘子缺陷检测与分类系统实现

YOLO11-LQEHead是一种基于YOLOv11架构的改进模型,专门针对绝缘子缺陷检测任务进行了优化。该模型在保持YOLO系列模型快速检测能力的同时,通过引入LQEHead(Lightweight Quality Estimation Head)模块,提高了对小尺寸缺陷的检测精度。构建了一个大规模的绝缘子缺陷数据集设计并实现了YOLO11-LQEHead模型开发了完整的检测系统,包括Web界面和移动端应用在实际测试中取得了良好的性能表现。

2026-01-14 09:12:40 767

原创 黄稻螟害虫检测基于Faster-RCNN_R50-Caffe-C4_MS-1x_COCO模型创新实现

本文提出了一种基于改进Faster-RCNN模型的黄稻螟害虫检测方法。研究采用Faster-RCNN_R50-Caffe-C4_MS-1x_COCO模型,通过引入多尺度特征融合(FPN)、CBAM注意力机制和针对性数据增强策略进行优化。实验结果表明,改进后的模型在测试集上达到92.3%的mAP值,相比原始模型提升4.1%。消融实验验证了各改进点的有效性,其中FPN和CBAM模块贡献最为显著。该方法为水稻害虫智能监测提供了高效解决方案,可替代传统人工检测方式,具有重要的农业应用价值。

2026-01-14 08:37:54 853

原创 木材缺陷检测与分类:基于FreeAnchor-X101的智能识别系统_1

YOLO系列模型演进与创新摘要:从YOLOv1开创实时目标检测,到最新v13版本,该系列持续突破性能边界。v1-v3奠定基础,引入多尺度预测;v5-v8实现性能飞跃,采用Focus模块和CSP结构;v9创新PGI机制解决梯度丢失;v10消除NMS实现端到端检测;v11专注轻量化边缘部署;v12探索多任务学习;v13引入混合注意力机制。各版本针对不同场景优化,形成从云端到边缘的完整解决方案,推动目标检测技术不断发展。

2026-01-13 14:00:40 557

原创 金属丝缺陷检测与分类系统实战-基于reppoints的改进模型训练与优化_1

本文提出了一种基于改进REPPOINTS算法的金属丝缺陷检测系统,针对细长目标检测的特殊需求进行了三方面优化:自适应采样机制动态调整采样点分布;多尺度特征融合模块增强不同尺度检测能力;优化损失函数提高边界回归精度。实验表明,改进算法在自建数据集上mAP达87.6%,较原始REPPOINTS提升5.2%,召回率提升7.8%。实际部署案例显示,系统检测速度达120米/分钟,准确率92.7%,较人工检测效率提升300%,人力成本降低83.3%。该系统有效解决了金属丝细长形态、缺陷多样等检测难题,为工业质检提供了高

2026-01-13 12:42:20 990

原创 基于RetinaNet的酒瓶标签检测与识别详解

本文介绍了基于RetinaNet的酒瓶标签检测与识别系统,使用包含5000张图像的数据集,采用ResNet50作为骨干网络。通过数据增强和Focal Loss优化,模型在测试集上达到92.3% mAP。系统可实时检测酒瓶标签,支持品牌识别和质量检查,在普通PC上处理1080p视频达15fps。未来将优化小目标检测、扩展多标签识别功能,并探索3D检测和轻量化模型。该项目为酒类行业自动化提供了有效的技术支持。

2026-01-13 12:07:55 536

原创 YOLOv10n-LSDECD窗户检测识别

本文提出了一种基于YOLOv10n-LSDECD的高精度窗户检测方法。该方法结合局部结构特征提取和深度集成机制,显著提升了复杂场景下的窗户检测性能。实验结果表明,该模型在自建数据集上达到87.3%的mAP,相比基线模型提升3.1%,特别在小目标检测和恶劣环境下表现突出。通过合理的训练策略和损失函数设计,模型在保持165FPS实时性能的同时,实现了对各类建筑窗户的精准检测。该系统已成功应用于智慧城市、建筑安全等领域,展现了良好的实用价值。

2026-01-13 11:36:31 766

原创 基于Reppoints的书籍检测与识别系统实现与优化

本文提出了一种基于Reppoints的书籍检测与识别系统,采用点集表示方法替代传统边界框,有效提升了不规则形状书籍的检测精度。系统包含数据预处理、Reppoints检测模型和书籍识别三大模块,通过多尺度特征融合和注意力机制优化检测效果,并采用模型剪枝、量化等技术提升实时性。实验表明,该系统在自建数据集上达到89.3%的mAP,处理速度25FPS,在图书馆管理、书店盘点和古籍数字化等场景中展现出优异性能,检测效率较人工提升10倍以上。

2025-12-20 15:39:40 569

原创 基于YOLOv8-MFMMAFPN的手部骨骼X光影像骨龄评估与骨骼结构识别系统深度学习

本文提出了一种基于改进YOLOv8的手部骨骼X光影像骨龄评估系统,通过引入多尺度特征融合多分支注意力机制(MFMMAFPN)提升骨骼检测精度。该系统采用端到端架构,包含数据预处理、模型训练、骨龄评估等模块。实验结果表明,改进模型在手腕骨检测任务上mAP@0.5达到92.1%,骨龄评估MAE仅4.3个月,接近专业医生水平。系统已部署为Web应用,提供自动化的骨骼检测和骨龄评估功能。相比传统方法,该系统具有客观性强、效率高等优势,为儿科生长发育评估提供了可靠的技术支持。

2025-12-20 15:01:59 925

原创 工业铝棒智能检测与识别:YOLO13-C3k2-Converse模型实战应用详解

YOLO13-C3k2-Converse模型作为工业铝棒检测与识别的创新解决方案,已经展现出卓越的性能和广阔的应用前景。随着技术的不断进步和应用的不断深入,这一模型将为工业生产带来更加智能、高效的检测解决方案,推动工业质检的数字化转型。未来,我们将继续优化模型性能,拓展应用领域,推动技术创新,为工业铝棒的高质量生产提供更加强大的技术支撑。同时,我们也期待与更多合作伙伴携手,共同推动工业检测技术的发展,为智能制造贡献力量!💪工业铝棒作为重要的工业原材料,在生产过程中需要对其质量进行严格检测。

2025-12-17 11:47:46 572

原创 基于Sparse-RCNN的茶树叶片病害识别系统:藻斑病、褐斑病及灰斑病的自动检测

本文提出了一种基于Sparse-RCNN的茶树叶片病害自动识别系统,用于检测藻斑病、褐斑病和灰斑病。系统采用模块化设计,包括图像采集、预处理、模型推理和结果展示四个核心模块。研究构建了包含2100张叶片图像的专用数据集,通过数据增强和专家标注确保数据质量。实验表明,优化后的Sparse-RCNN模型在病害检测任务中达到87.3%的mAP,比其他主流算法高出3-5个百分点。系统实现了图像预处理、模型推理和结果可视化等功能,具有较高的准确性和实用性,为茶树病害智能化诊断提供了有效解决方案。

2025-12-17 11:05:13 785

原创 轴体分类识别:基于Decoupled-Solo-Light模型的中心轴、铁质轴和尼龙轴自动检测与分类系统

本文提出了一种基于Decoupled-Solo-Light模型的机械键盘轴体自动分类系统,能够高效识别中心轴、铁质轴和尼龙轴。该系统采用轻量化深度学习模型,通过解耦特征提取和分类任务,在保持95%以上分类准确率的同时显著降低计算复杂度。实验表明,模型在10,000张图像数据集上F1分数达96.8%,优于主流检测算法。针对工业部署需求,系统进行了硬件选型和软件优化,采用NVIDIA Jetson Nano边缘设备实现高效实时检测。该系统为键盘制造提供了智能化的质量控制解决方案。

2025-12-15 09:24:35 701

原创 魔改YOLO13高阶版改进之结合C3k2与DySnakeConv电信天线设备检测

本文提出了一种改进的YOLO13模型,结合C3k2和DySnakeConv模块,用于电信天线设备检测。针对电信天线设备小目标、密集排列的特点,C3k2模块通过k-means优化卷积核增强特征提取能力,DySnakeConv模块动态调整感受野以适应不同形状设备。实验表明,改进后的模型在保持计算效率的同时,显著提升了小目标检测精度,适用于复杂环境下的电信设备检测任务。

2025-12-15 08:56:36 770

原创 基于Mask R-CNN的道路路面损伤自动检测与分类研究

本文提出了一种改进的Mask R-CNN算法用于道路路面损伤自动检测与分类。针对传统方法在多尺度裂缝检测中的不足,设计了跨尺度特征融合模块和自适应特征加权机制,显著提升了特征表达能力。同时构建了包含6类损伤的专业数据集,并采用多尺度训练策略和自适应数据增强技术优化模型性能。实验结果表明,改进算法在精确率(0.857)、召回率(0.812)和mAP@0.5(0.826)等指标上均优于原始Mask R-CNN及其他对比算法,为道路维护提供了高效可靠的自动化检测方案。

2025-12-14 20:05:29 711

原创 YOLOX-Nano彩色盒子目标检测:8x8批量训练300轮COCO数据集优化方案

本文介绍了使用YOLOX-Nano模型进行彩色盒子目标检测的优化方案。YOLOX-Nano作为轻量级模型,通过Anchor-Free设计和多尺度特征融合,在保持精度的同时降低计算量。针对COCO数据集,采用随机翻转、颜色抖动等数据增强策略提升模型泛化能力。提出8x8批量训练策略,在8个GPU上并行训练以平衡显存限制与训练效率。300轮训练方案包含学习率预热、余弦退火调度等优化措施,配合BCE损失函数和AdamW优化器,确保模型充分收敛。实验结果表明,该方法在彩色盒子检测任务上实现了良好的精度与速度平衡。

2025-12-14 19:26:33 1039

原创 【番茄病害检测】基于Faster R-CNN的番茄黄叶卷曲病毒智能识别系统,完整实现与代码解析

番茄黄叶卷曲病毒智能检测系统研究 本研究基于Faster R-CNN构建了一套番茄黄叶卷曲病毒智能识别系统。该系统采用2148张标注图像数据集,通过数据增强技术(90度旋转)扩充样本,并遵循标准YOLOv8划分方式。研究完整实现了从数据预处理到模型部署的全流程,详细解析了Faster R-CNN在该病害检测任务中的应用方法。 系统创新性地将深度学习技术应用于农业病害诊断领域,为番茄种植提供了自动化病害监测解决方案。实验结果表明,该系统能有效识别黄叶卷曲病毒症状,检测准确率达到实用水平。研究不仅提供了完整的代

2025-12-12 11:09:16 701

原创 高尔夫球检测识别 YOLO12-A2C2f-SEFFN模型实现与优化

本文提出了一种改进的YOLOv12模型(YOLO12-A2C2f-SEFFN)用于高尔夫球检测,解决了小目标检测的难题。模型创新性地引入了A2C2f模块实现双路径特征融合和自适应特征选择,并结合SEFFN注意力机制增强特征表达能力。实验表明,该模型在自建高尔夫球数据集上mAP@0.5达到0.927,相比原始YOLOv12提升2.6%,同时保持60FPS的实时性能。文章详细介绍了模型架构、训练优化方法及实际应用场景,为小目标检测任务提供了有效解决方案。

2025-12-12 10:27:25 927

原创 目标检测改进方法:基于YOLO11-SOEP-MFM的文本和关键词检测识别研究

YOLO(You Only Look Once)系列算法自2016年首次提出以来,已经经历了多个版本的迭代。从最初的YOLOv1到最新的YOLOv11,算法在检测精度和速度上都有了显著提升。YOLO算法的核心思想是将目标检测任务转化为回归问题,通过单次前向传播同时预测目标的位置和类别。这种端到端的检测方式使得YOLO算法在保持较高检测精度的同时,具有非常快的推理速度,非常适合实时应用场景。

2025-12-11 17:32:53 1073

原创 木材缺陷检测新突破:基于Mask R-CNN的智能识别系统_2

本文提出了一种基于Mask R-CNN的木材缺陷智能检测系统,该系统能够自动识别木材表面的裂纹、节疤、虫蛀等多种缺陷类型。该系统采用Mask R-CNN实例分割网络架构,通过特征提取网络、区域提议网络和检测头的协同工作,实现了高精度的缺陷定位和像素级分割。在程序设计方面,重点介绍了数据预处理(包括图像增强、标注和样本平衡)、模型训练(采用两阶段训练策略和优化损失函数)以及缺陷检测与分割的核心流程。实验结果表明,该系统能够有效解决传统人工检测效率低、主观性强的问题,为木材加工行业提供了智能化的质量检测解决方案

2025-12-11 16:54:13 603

原创 农业机械检测与识别46基于YOLOv8-SPPF-LSKA的Supperseeder和拖拉机目标检测系统_1

本文提出了一种改进的YOLOv8农业机械检测系统,通过引入SPPF模块和LSKA注意力机制,显著提升了复杂环境下的检测性能。实验结果表明,改进后的YOLOv8-SPPF-LSKA算法在自建农业机械数据集上的mAP@0.5达到0.934,相比基线模型提升5.05%。该系统已成功应用于实际农业场景,实现了对播种机和拖拉机的高效识别。研究创新性地结合了多尺度特征提取与轻量级注意力机制,为农业智能化发展提供了技术支持。

2025-12-09 14:29:25 830

原创 YOLO11-SPDConv改进即插即用结构显著提升番茄病害检测性能原创

本文提出了一种基于SPDConv改进的YOLO11模型,用于提升番茄病害检测性能。针对传统方法在小目标检测、多尺度特征提取和环境干扰方面的不足,研究创新性地引入空间金字塔深度可分离卷积(SPDConv)结构,形成即插即用的C3-SPDConv模块。实验结果表明,改进后的YOLO11-SPDConv在番茄病害数据集上达到92.3%的mAP,较原始YOLO11提升3.2%,小目标检测精度提升5.1%,而模型复杂度仅增加约10%。该模型已成功部署于边缘设备,实现25FPS的实时检测,并开发了移动应用辅助农民进行病

2025-12-09 13:43:33 866

原创 滑坡灾害识别与监测:基于YOLOv10n-WFU模型的智能检测系统

本文提出了一种基于改进YOLOv10n的滑坡灾害智能检测系统(YOLOv10n-WFU)。针对传统滑坡监测方法效率低、成本高的问题,该系统创新性地设计了WFU模块,通过加权特征融合增强多尺度特征提取能力,显著提高了滑坡检测精度。实验结果表明,该模型在保持实时性的同时,mAP指标达到88.9%,优于主流目标检测算法。系统采用分布式架构,支持多源数据接入和实时预警,已在实际应用中成功预警多起滑坡灾害。未来研究将重点解决小目标检测、遮挡问题和时序分析等技术挑战,进一步提升系统性能。

2025-12-06 10:52:47 650

原创 【深度学习】基于YOLOv8的鲨鱼牙齿化石识别与分类系统:鹰鳐齿、灰鲨齿、巨齿鲨齿、锯齿鲨齿和沙虎鲨齿五种类型检测_1

本文介绍了一个基于YOLOv8的鲨鱼牙齿化石识别与分类系统,该系统能够准确识别五种常见的鲨鱼牙齿类型:鹰鳐齿、灰鲨齿、巨齿鲨齿、锯齿鲨齿和沙虎鲨齿。实验结果表明,该系统在测试集上取得了94.1%的平均准确率,具有良好的实用价值。🎉扩充数据集:增加更多种类的鲨鱼牙齿样本,提高模型的泛化能力。🌊引入3D信息:结合牙齿的三维形态特征,提高识别的准确性。📐轻量化模型:优化模型结构,使其能够在移动设备上高效运行。📱半监督学习:减少对标注数据的依赖,降低数据收集成本。🤖多模态融合。

2025-12-06 10:25:10 976

原创 复杂路口环境下车辆与交通区域检测识别 使用YOLOv10n-HSFPN实现高精度检测

本文提出了一种基于YOLOv10n-HSFPN模型的复杂路口车辆与交通区域检测方法。针对路口场景中目标密集、尺度变化大等问题,该模型采用层次化语义特征金字塔网络(HSFPN)实现多尺度特征融合。实验表明,在包含多种天气条件的自建数据集上,该方法达到86.7%的mAP,优于YOLOv5s等基准模型。量化后的模型在边缘设备上实现12ms的推理速度,适合实际部署。该研究为智能交通系统中的目标检测任务提供了有效的解决方案。

2025-12-05 19:25:39 761

原创 Yolov8沉积岩分类与识别系统_2

基于YOLOv8的沉积岩智能分类系统 摘要:本文介绍了一种基于YOLOv8深度学习算法的沉积岩自动分类与识别系统。该系统通过构建包含5种主要沉积岩类型(砂岩、页岩、石灰岩、泥岩和砾岩)的5000张样本图像数据集,采用迁移学习和数据增强技术训练高效识别模型。实验结果表明,系统分类准确率达到92%以上,相比传统人工分类效率提升约10倍。系统采用PyQt6开发用户界面,支持图像上传、实时检测和结果可视化功能,已成功应用于石油勘探、矿产资源开发等地质勘探领域。未来计划引入3D图像处理和多模态数据融合技术进一步优化系

2025-12-05 18:48:26 597

原创 电线杆状态检测与分类_基于Faster R-CNN的X101-32x8d-FPN模型详解

Faster R-CNN是一种经典的深度学习目标检测模型,它将区域提议网络(RPN)与Fast R-CNN相结合,实现了端到端的训练。其核心创新在于引入了RPN网络,替代了传统的选择性搜索方法,大大提高了检测速度和精度。DetectionRPNDetectionRPN这个公式展示了Faster R-CNN的四个核心组件:区域提议网络(RPN)负责生成候选区域,感兴趣池化(RoI Pooling)提取特征,分类器判断目标类别,边界框回归器调整边界框位置。

2025-12-03 16:29:27 605

原创 【深度学习实战】使用Faster R-CNN X101-64x4d FPN 2x模型实现汽车板材缺陷检测与分类_1

本文介绍了使用Faster R-CNN X101-64x4d FPN 2x模型实现汽车板材缺陷检测的方法。首先阐述了深度学习在工业质检中的优势,然后详细说明了数据集的收集、标注和增强策略。重点分析了X101-64x4d FPN 2x模型的架构特点,包括ResNeXt-101骨干网络和特征金字塔结构,并提供了模型定义代码示例。该方案通过高性能目标检测算法,能够有效识别板材表面的划痕、凹陷等缺陷,相比传统人工检测具有更高精度和效率。

2025-12-03 15:50:48 954

原创 无人机螺旋桨部件识别与定位:基于GA-RetinaNet算法的实现

无人机螺旋桨部件检测:基于GA-RetinaNet算法的实现 摘要 本文提出了一种改进的GA-RetinaNet算法用于无人机螺旋桨部件的高精度检测。算法通过遗传算法优化锚框生成机制,结合改进的ResNet特征提取网络(包含CBAM注意力机制和特征融合模块),显著提升了检测性能。实验结果表明,在包含1000张图像的数据集上,改进算法达到89.7%的mAP,比原始RetinaNet提升7.4个百分点,同时保持38FPS的实时性能。消融实验验证了各改进模块的有效性,其中遗传算法优化的锚框贡献最大(+4.2% m

2025-12-01 12:44:02 610

原创 外卖配送物品检测与分类_RPN_R101_FPN_1x_COCO模型实践指南_1

本文介绍了基于RPN、R101和FPN架构的COCO模型在外卖配送物品检测与分类中的应用。该模型融合了区域建议网络、ResNet-101和特征金字塔网络的优势,在COCO数据集预训练基础上针对外卖场景微调,实现了87%的mAP@0.5准确率。文章详细阐述了数据集构建、模型训练优化、评估部署等关键技术环节,包括数据增强策略、损失函数设计和量化部署方案。实际应用中模型处理速度达30FPS,能有效识别餐盒、饮料等20类常见外卖物品。研究同时指出了在极端光照条件和小物品检测方面的局限性,并提出了引入轻量级网络、多模

2025-12-01 12:10:05 766

原创 基于改进YOLO11-C3k2-RetBlock的3D打印过程缺陷自动检测与分类系统

本文提出了一种改进的YOLO11-C3k2-RetBlock模型用于3D打印缺陷自动检测与分类。针对3D打印过程中常见的层间分离、孔隙、翘曲等六类缺陷,通过引入C3k2多尺度特征融合模块和RetBlock注意力机制,显著提升了小目标检测能力和特征提取精度。实验结果表明,改进模型在15,000张图像数据集上的mAP@0.5达到86.7%,较原始YOLO11提升5.3%,同时参数量减少18.2%。该研究为3D打印质量控制提供了高效的智能化解决方案,已在实际工业应用中取得良好效果。

2025-11-28 09:42:53 1007

原创 YOLOv10n-EfficientRepBiPAN_基于深度学习的大米缺陷检测与分类系统实现_1

我们的系统采用了先进的YOLOv10n-EfficientRepBiPAN架构,结合了最新的目标检测技术和特征提取网络。图像采集模块:使用工业相机获取大米图像预处理模块:对图像进行增强和标准化处理检测模块:基于YOLOv10n的目标检测分类模块:基于EfficientRepBiPAN的特征分类结果展示模块:直观展示检测结果和统计信息这种架构设计使得系统在保持高检测精度的同时,实现了较快的推理速度,非常适合工业环境下的实时检测需求。🚀。

2025-11-28 09:15:03 828

原创 基于YOLO11的中国象棋棋子识别与分类方法研究

本文提出了一种基于YOLO11的中国象棋棋子识别与分类方法。通过分析棋子视觉特征,构建了包含10,000张图像的数据集,并采用数据增强技术提升模型泛化能力。在YOLO11-seg基础上引入LAWDS模块和位置校正算法,优化了多尺度特征融合和损失函数设计。实验结果表明,该方法在精确率(93.8%)、召回率(91.5%)和mAP(95.1%)上优于主流算法,处理速度达25ms/帧。实际应用中,系统在正常光照条件下识别准确率达96.2%,为智能象棋系统提供了有效的技术支持。未来将进一步优化模型在极端场景下的性能。

2025-11-27 17:14:42 678

原创 俯卧撑动作检测与识别-PyTorch搭建RetinaNet模型实现人体姿态识别_1

本文介绍了使用PyTorch搭建RetinaNet模型实现俯卧撑动作检测的方法。RetinaNet是一种单阶段目标检测模型,通过Focal Loss解决了正负样本不平衡问题。文章详细讲解了模型架构,包括ResNet骨干网络、FPN特征金字塔和检测头,并提供了关键代码实现。项目采用70-15-15的数据集划分策略,强调数据增强对模型泛化能力的重要性。该技术在健身监测和运动分析领域具有实用价值,能够识别不同角度和光照条件下的俯卧撑动作。

2025-11-23 13:06:34 32

原创 基于YOLO11-C3k2-FFCM的小麦赤霉病检测:区分感染与健康植株的深度学习实现_1

基于YOLO11-C3k2-FFCM的小麦赤霉病检测研究 摘要 本研究提出了一种改进的YOLO11模型用于小麦赤霉病检测,通过引入C3k2模块和FFCM注意力机制提升检测性能。实验结果表明,改进后的YOLO11-C3k2-FFCM模型在mAP@0.5达到91.7%,相比原始YOLO11提升2.5个百分点,同时保持11.2ms的推理速度。模型能够准确区分感染与健康植株,特别在小型病灶检测上表现优异,为农业病害智能监测提供了有效解决方案。 关键技术 C3k2模块:通过多尺度并行卷积增强特征提取能力,mAP提升2

2025-11-23 12:36:54 94

原创 基于YOLO11分割与RVB-EMA的脑部疾病严重程度分级分类系统研究

本文提出了一种基于YOLO11分割与RVB-EMA的脑部疾病严重程度分级分类系统,该系统结合了最新的目标检测技术和时序建模方法,实现了对脑部疾病的精准定位和严重程度评估。实验结果表明,该系统在公开数据集和临床数据集上都取得了优异的性能,具有重要的临床应用价值。!该系统不仅能够提高诊断的准确性和效率,还能为医生提供客观、量化的疾病评估依据,有助于制定个性化的治疗方案。未来,我们将进一步优化系统性能,扩大临床验证范围,推动系统在临床实践中的广泛应用。!

2025-11-21 11:32:37 37

原创 泡沫质量检测与分类实战:基于YOLOv8-MSGA的多缺陷识别系统

本文介绍了基于YOLOv8-MSGA的泡沫质量检测与分类系统,该系统通过改进的多尺度分组注意力机制,能够精准识别泡沫材料的多种缺陷。系统采用CSPDarknet53作为骨干网络,引入MSGA模块增强特征提取能力,并进行了模型量化、TensorRT加速等优化,在测试集上达到0.842的mAP@0.5和60FPS的推理速度。该系统可实现对泡沫黑点、起泡等5类缺陷的自动识别,显著提升了工业质检的效率和准确性。

2025-11-19 14:38:24 585

原创 基于深度学习的多国国旗识别与检测系统改进HTC_without_semantic模型实现_1

本文提出了一种改进的HTC_without_semantic模型用于多国国旗识别与检测。该模型通过去除语义分割模块优化结构,在保持检测精度的同时显著降低计算复杂度。实验基于包含10,000张图像的多国国旗数据集,改进后的模型在mAP仅下降1.7%的情况下,推理时间减少38.9%,模型大小减小40%。该系统在智能监控、公共安全等领域具有广泛应用前景,未来将进一步优化轻量化部署和多模态融合方案。

2025-11-19 14:08:28 675 1

原创 用yolov26训练自己的数据集原创

本文介绍了YOLOv26的完整训练流程,主要包括三个部分:代码下载、环境配置和自定义数据集训练。首先从GitHub获取YOLOv8源码,然后详细说明了环境配置步骤,包括创建conda环境、安装PyTorch和其他依赖包,并提供了常见问题的解决方法。最后重点讲解了如何将自己的VOC格式数据集转换为YOLO格式并进行训练,包括数据预处理、模型训练、验证和预测等步骤。文章还提供了数据格式转换的Python代码示例,帮助用户快速上手YOLOv8的目标检测任务。

2025-10-10 18:54:06 2140 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除