小希的迷宫
Problem Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4
5 6 0 0
8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0
3 8 6 8 6 4
5 3 5 6 5 2 0 0
-1 -1
5 6 0 0
8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0
3 8 6 8 6 4
5 3 5 6 5 2 0 0
-1 -1
Sample Output
Yes
Yes
No
Answer
这是一个很奇妙的方法,首先用一个变量记录数据的组数,当数据为0组时(不包含0 0,但是这个记录值是1,具体看代码),输出Yes。
然后用set保存房间数,因为房间会重复,用set方便,当然用一个数组记录是否出现过也一样。
最后判断房间的数目和记录数是否相等,如果相等,输出Yes,否则输出No。
原理:
可以确定的是,没有重复数据,例如1 2 1 2 0 0,否则这个代码会输出No,就WA了。
这个题目的意思可以转化为图中是否有环的存在,来反证一下这个思路:
刚开始s.size=0,k=1;输入一组数据后,s.size=2,k=2,两个是相等的。
如果数据中有两个房间是独立的,那么s.size会比k大1,不相等。
如果输入1 2 2 3 3 1 0 0,输入3 1的时候,s.size会比k小1,不相等。
归纳起来,每有一个环,s.size会比k小1,每有独立房间,s.size会比k大1。
那么问题来了,如果环数跟独立房间数相等怎么办?没办法,那就GG了,例如1 2 2 3 3 1 4 5 0 0,输出是Yes的。
这也说明没有独立房间这种数据。
#include <iostream> #include <cstdio> #include <cstring> #include <vector> #include <set> using namespace std; set<int> s; int main() { int k,a,b; while(1) { k=1,s.clear(); while(~scanf("%d %d",&a,&b),a+b) { if(a+b==-2)return 0; k++,s.insert(a),s.insert(b); } if(k==1||(int)s.size()==k)puts("Yes"); else puts("No"); } return 0; }