HDU-1272 小希的迷宫 (并查集)

题目:

上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
这里写图片描述

Input

输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。

Output

对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出”Yes”,否则输出”No”。

Sample Input

6 8 5 3 5 2 6 4
5 6 0 0
8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0
3 8 6 8 6 4
5 3 5 6 5 2 0 0
-1 -1

Sample Output

Yes
Yes
No


思路:

  • 该题用并查集做难度不大,判断是否成环即判断是否要合并的两个结点的根结点相同即可,因此稍稍改变了一下join函数。
  • 需要注意的是还有一点是每个房间必须连通,这一点我一开始忽视了于是过样例却WA(因为样例都是保证全连通);

This is Code:

#include<bits/stdc++.h>
using namespace std;
int pre[100005];
bool vis[100005];

int find(int x){
    int r = x;
    while(pre[r] != r){
        r = pre[r];
    }
    int i = x, j;
    while(i != r){
        j = pre[i];
        pre[i] = r;
        i = j;
    }
    return r;
}

bool join(int x, int y){
    int i = find(x), j = find(y);
    if (i != j){
        pre[j] = i;
        return true;
    }
    else return false;
}

int main()
{
    int a, b;
    while(scanf("%d%d", &a, &b) != EOF){
        for (int i = 1; i <= 100005; ++i) pre[i] = i;
        memset(vis, 0, sizeof(vis));
        if (a == -1 && b == -1) break;
        if (a == 0 && b == 0){
            printf("Yes\n");
            continue;
        }
        bool flag = 1;
        while(a != 0){
            vis[a] = vis[b] = 1;
            //判断是否成环
            if(!join(a, b)) flag = 0;
            scanf("%d%d", &a, &b);
        }
        int root = 0;
        //判断是否全连通
        for (int i = 1; i <= 100005; ++i)
            if (vis[i] && pre[i] == i) ++root;
        if (root > 1) flag = 0;
        if (flag) printf("Yes\n");
        else printf("No\n");
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值