HDU 6078 Wavel Sequence【dp递推】【好题】【思维题】

Wavel Sequence

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 362    Accepted Submission(s): 175


Problem Description
Have you ever seen the wave? It's a wonderful view of nature. Little Q is attracted to such wonderful thing, he even likes everything that looks like wave. Formally, he defines a sequence  a1,a2,...,an as ''wavel'' if and only if  a1<a2>a3<a4>a5<a6...



Picture from Wikimedia Commons


Now given two sequences  a1,a2,...,an and  b1,b2,...,bm, Little Q wants to find two sequences  f1,f2,...,fk(1fin,fi<fi+1) and  g1,g2,...,gk(1gim,gi<gi+1), where  afi=bgi always holds and sequence  af1,af2,...,afk is ''wavel''.

Moreover, Little Q is wondering how many such two sequences  f and  g he can find. Please write a program to help him figure out the answer.
 

Input
The first line of the input contains an integer  T(1T15), denoting the number of test cases.

In each test case, there are  2 integers  n,m(1n,m2000) in the first line, denoting the length of  a and  b.

In the next line, there are  n integers  a1,a2,...,an(1ai2000), denoting the sequence  a.

Then in the next line, there are  m integers  b1,b2,...,bm(1bi2000), denoting the sequence  b.
 

Output
For each test case, print a single line containing an integer, denoting the answer. Since the answer may be very large, please print the answer modulo  998244353.
 

Sample Input
 
  
1 3 5 1 5 3 4 1 1 5 3
 

Sample Output
 
  
10
Hint
(1)f=(1),g=(2). (2)f=(1),g=(3). (3)f=(2),g=(4). (4)f=(3),g=(5). (5)f=(1,2),g=(2,4). (6)f=(1,2),g=(3,4). (7)f=(1,3),g=(2,5). (8)f=(1,3),g=(3,5). (9)f=(1,2,3),g=(2,4,5). (10)f=(1,2,3),g=(3,4,5).
 

Source

题意:给出一个有n(<=2000)个数字的序列 a(ai <=2000) 再给出一个有m(m<=2000)个数字的序列 b (bi<=2000) ,定义波浪序列为:x1<x2>x3<x4……(注意第一次必须是上升,不能是下降,也就是说第一项必须是波谷)。现在要求找到一个严格单调递增的序列 f:f1,f2,……fk。以及相对应的严格单调递增的序列g:g1,g2,……gk。(k>=1)使得每个a_fi = b_gi,同时满足a_f1,a_f2,a_f3……a_fk为波浪序列。求不同的fg映射有多少种选取方式。

a,b中分别从前向后选取k个数字。然后相对应的 a 中选择的每个位置的数字要和 b 中选择的对应位次的数字相同。(当然如果a数组出现过x,而b没有出现过x,显然x不可能被选取),而 f 、g 则是相对应的下标。要满足选取出来的这个数字序列是一个波浪序列。显然波浪序列中的数字分成两种:波峰和波谷。

总体来说,这个题就是a、b数组之间的匹配问题,同时满足是一个波浪序列。


则:

dp[i][j][0]表示以a[i]和b[j]为公共序列结尾且为波谷的情况总和。 
dp[i][j][1]则表示波峰的情况总和。 

sum[i][j][0]表示sum(dp[k][j][0] | 1<=k<=i-1) 
sum[i][j][1]则表示sum(dp[k][j][1] | 1<=k<=i-1)    (相当于固定b[j]这个数字,然后将所有可能性加起来)


那么这个过程中只要不断判断这个数字其前面可能的情况(若其为波峰则判断其前可满足作为波谷的数量cnt0,反之亦然),然后判断这个数字能不能加进这个波浪中不断记录结果即可。


注意因为第一次必须为上升,则表示第一个数字前为波峰所以cnt1=1,cnt0=0


这个题有两点值得借鉴:

1、动态规划递推过程中用波峰波谷作为状态转移的关键,然后进行递推

2、用sum来优化其前相加的结果,减少重复的相加运算。


以下是样例的递推过程,蓝色粗线代表程序执行过程,旁边的线代表当前所记录波浪的状态:




#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <cstring>
#define INF 0x3f3f3f3f
#define ms(x,y) memset(x,y,sizeof(x))
using namespace std;

typedef long long ll;
typedef pair<int, int> P;

const int maxn = 2e3 + 10;
const int mod = 998244353;

int n, m;
int a[maxn], b[maxn];
ll dp[maxn][2];		//原为dp[i][j][2] 表示a数组枚举到第i个,b数组枚举到第j个,dp[i][j][0]表示当前选的数为波谷,反之同理,因为只用到上一个i-1所以利用滚动数组将其省去
ll sum[maxn][2];	//原为sum[i][j][2]表示a数组枚举从1到第i个,b数组枚举到第j个波峰(sum[i][j][1])或波谷(sum[i][j][0])的和

int main()
{
	int t;
	scanf("%d", &t);
	while (t--)
	{
		ll ans = 0;
		scanf("%d%d", &n, &m);
		ms(sum, 0);
		ms(dp, 0);
		for (int i = 1; i <= n; i++)
			scanf("%d", a + i);
		for (int i = 1; i <= m; i++)
			scanf("%d", b + i);
		for (int i = 1; i <= n; i++)
		{
			ll cnt1 = 1;	//最后一个是波峰的数量
			ll cnt0 = 0;	//最后一个是波谷的数量
			for (int j = 1; j <= m; j++)
			{
				dp[j][0] = dp[j][1] = 0;
				if (a[i] == b[j])	//【判断能否加进来】当相同时可以将当前的数作为 波峰(当前数做波峰则看其前面可作为他的波谷的数量cnt0)或波谷(其前cnt1种可能)时,前面所有可能的情况加到ans中
				{
					dp[j][0] = cnt1;
					dp[j][1] = cnt0;
					ans = (ans + cnt1 + cnt0) % mod;
				}
				else if (b[j] < a[i]) cnt0 = (cnt0 + sum[j][0]) % mod;	//说明当a[i]被选中时,前面的以b[j]结尾的可以作为波谷(所以将其记录到cnt0,又因为前面的作为波谷,所以为sum[j][0])
				else cnt1 = (cnt1 + sum[j][1]) % mod;	//反之亦然
			}
			for (int j = 1; j <= m; j++)
			{
				if (b[j] == a[i])
				{
					sum[j][0] = (sum[j][0] + dp[j][0]) % mod;	//以数字b[j]作为谷底的所有可能加进去,方便下次统计,减少重复计算(dp的递推优化)
					sum[j][1] = (sum[j][1] + dp[j][1]) % mod;	//同理
				}
			}
		}
		printf("%lld\n", ans);
	}
	return 0;
}



可借鉴:点击打开链接的思路


转载于:https://www.cnblogs.com/Archger/p/8451612.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道是一道经典的斜率优化dp目,需要用到单调队列的思想。 目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道目。 首先,让我们看一下该目的描述。目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该目的解思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问可以用斜率优化DP解决。 首先,我们需要了解原问的含义。问描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问的时候,斜率优化DP可以很好地解决问

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值