1924: [Sdoi2010]所驼门王的宝藏
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 1380 Solved: 603
[Submit][Status][Discuss]
Description
Input
第一行给出三个正整数 N, R, C。 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室,类型为 Ti。Ti是一个1~3间的整数, 1表示可以传送到第 xi行任意一列的“横天门”,2表示可以传送到任意一行第 yi列的“纵寰门”,3表示可以传送到周围 8格宫室的“**门”。 保证 1≤xi≤R,1≤yi≤C,所有的传送门位置互不相同。
Output
只有一个正整数,表示你确定的路线所经过不同藏宝宫室的最大数目。
Sample Input
2 2 1
2 4 2
1 7 2
2 7 3
4 2 2
4 4 1
6 7 3
7 7 1
7 5 2
5 2 1
Sample Output
HINT
测试点编号 N R C 1 16 20 20 2 300 1,000 1,000 3 500 100,000 100,000 4 2,500 5,000 5,000 5 50,000 5,000 5,000 6 50,000 1,000,000 1,000,000 7 80,000 1,000,000 1,000,000 8 100,000 1,000,000 1,000,000 9 100,000 1,000,000 1,000,000 10 100,000 1,000,000 1,000,000
Source
图的长和宽很大,所以我们不可能把所有点都连边
我们发现没有传送门的点是没有意义的
所以这需要在有传送门的点之间连边即可
一二操作好处理,三号操作的话,因为长和宽很大数组肯定开不下
我们用map去记录周围八个点是否有穿送门即可
细节看代码,记得vector的内存是根据实际用多少来算的
#include <bits/stdc++.h>
#define ll long long
#define eps 1e-7
using namespace std;
inline int read(){
int x=0;int f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)) {x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int MAXN=1e5+10;
int dx[8]={0,0,1,1,1,-1,-1,-1};
int dy[8]={1,-1,0,1,-1,0,1,-1};
vector < int > a[1000010],b[1000010];
map < int,int > mp[1000010];
struct node{
int y,next;
}e[1000010],E[1000010];
int dfs_clock=0,linkk[MAXN],dfn[MAXN],low[MAXN],ans,k,n,m,f[MAXN],x[MAXN],y[MAXN],opt[MAXN],len,Linkk[MAXN],stark[MAXN],top,tot,ine[MAXN],sum[MAXN];
bool vis[MAXN];
inline void insert(int xx,int yy){
if(xx==yy) return;
e[++len].y=yy;e[len].next=linkk[xx];linkk[xx]=len;
}
inline void insertt(int xx,int yy){
E[++len].y=yy;E[len].next=Linkk[xx];Linkk[xx]=len;
}
inline void tarjin(int st){
dfn[st]=low[st]=++dfs_clock;
stark[++top]=st;vis[st]=1;
for(int i=linkk[st];i;i=e[i].next){
if(!dfn[e[i].y]){
tarjin(e[i].y);
low[st]=min(low[st],low[e[i].y]);
}
else if(vis[e[i].y]) low[st]=min(low[st],dfn[e[i].y]);
}
if(low[st]==dfn[st]){
tot++;int k;
do{
k=stark[top--];
ine[k]=tot;
sum[tot]++;
vis[k]=0;
}while(k!=st);
}
}
void init(){
k=read();n=read();m=read();
for(int i=1;i<=k;i++){
x[i]=read();y[i]=read();opt[i]=read();
mp[x[i]][y[i]]=i;
a[x[i]].push_back(i);
b[y[i]].push_back(i);
}
}
void build(){
for(int i=1;i<=n;i++){
int x=0;int t=a[i].size();
for(int j=0;j<t;j++){
if(opt[a[i][j]]==1) {x=a[i][j];break;}
}
for(int j=0;j<t;j++){
insert(x,a[i][j]);
if(opt[a[i][j]]==1) insert(a[i][j],x);
}
}
for(int i=1;i<=m;i++){
int y=0;int t=b[i].size();
for(int j=0;j<t;j++){
if(opt[b[i][j]]==2) {y=b[i][j];break;}
}
for(int j=0;j<t;j++){
insert(y,b[i][j]);
if(opt[b[i][j]]==2) insert(b[i][j],y);
}
}
for(int i=1;i<=k;i++){
if(opt[i]==3){
for(int j=0;j<8;j++){
int t=mp[x[i]+dx[j]][y[i]+dy[j]];
if(t) insert(i,t);
}
}
}
}
void rebuild(){
len=0;
for(int i=1;i<=k;i++){
for(int j=linkk[i];j;j=e[j].next){
if(ine[i]!=ine[e[j].y]){
insertt(ine[i],ine[e[j].y]);
}
}
}
}
inline void dp(int st){
vis[st]=1;
for(int i=Linkk[st];i;i=E[i].next){
if(!vis[E[i].y]) dp(E[i].y);
f[st]=max(f[E[i].y],f[st]);
}
f[st]+=sum[st];
ans=max(ans,f[st]);
}
void solve(){
build();
for(int i=1;i<=k;i++){
if(!dfn[i]) tarjin(i);
}
rebuild();
memset(vis,0,sizeof(vis));
for(int i=1;i<=tot;i++){
if(!vis[i]) dp(i);
}
cout<<ans<<endl;
}
int main(){
init();
solve();
return 0;
}