4886: [Lydsy1705月赛]叠塔游戏
Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 202 Solved: 81
[Submit][Status][Discuss]
Description
小Q正在玩一个叠塔的游戏,游戏的目标是叠出尽可能高的塔。在游戏中,一共有n张矩形卡片,其中第i张卡片的
长度为a_i,宽度为b_i。小Q需要把所有卡片按一定顺序叠成一座塔,要求对于任意一个矩形,它的长度要严格大
于它上边的任意一个矩形的长度。塔的高度为所有矩形的宽度之和。在游戏中,小Q可以将卡片翻转90度来使用,
而且必须用上全部n张卡片。请写一个程序,帮助计算小Q能叠出最高的塔的高度。
Input
第一行包含一个正整数n(1<=n<=250000),即卡片的个数。
接下来n行,每行两个正整数a_i,b_i(1<=a_i,b_i<=10^9),分别表示每张卡片的长度和宽度。
Output
输出一行一个整数,即最高的塔的高度,输入数据保证一定存在解。
Sample Input
3
5 16
10 5
5 10
5 16
10 5
5 10
Sample Output
20
HINT
Source
我们对于a,b离散后建点,那么一个卡片就相当于a到b有一条边。
现在要给边定向,使得每个点入度均为1。
贡献=每个点出度*该点权值
bzoj4883的时候谈过,这样的连通块要么是环套树要么是树。
肯定都有的一部分贡献是(deg[i]-1)*a[i](总度数-入度)*权值
对于树,存在一个节点没有入度,所以我们并查集的时候找到连通块中权值最大的即可。
对于环套树,每个点都必须有入度,那么就直接统计。
这种题思路非常巧妙啊。
/**************************************************************
Problem: 4886
User: zhangenming
Language: C++
Result: Accepted
Time:7936 ms
Memory:28636 kb
****************************************************************/
#include <bits/stdc++.h>
#define inf 1e9+10
#define ll long long
#define eps 1e-7
#define ull unsigned long long
#define p(x,y) (x-1)*n+y
using namespace std;
inline int read(){
int x=0;int f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)) {x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int MAXN=1e6+10;
int f[MAXN],n,m,vis[MAXN],mx[MAXN],w[MAXN],a[MAXN],b[MAXN],d[MAXN];
inline int find(int x){
return x==f[x]?x:f[x]=find(f[x]);
}
int main(){
n=read();
for(int i=1;i<=n;i++){
a[i]=read();b[i]=read();
w[i*2-1]=a[i];w[i*2]=b[i];
}
sort(w+1,w+2*n+1);
int k=unique(w+1,w+2*n+1)-w-1;
for(int i=1;i<=k;i++){
mx[i]=w[i];f[i]=i;
}
for(int i=1;i<=n;i++){
a[i]=lower_bound(w+1,w+k+1,a[i])-w;
b[i]=lower_bound(w+1,w+k+1,b[i])-w;
int fx=find(a[i]);int fy=find(b[i]);
if(fx!=fy){
mx[fy]=max(mx[fx],mx[fy]);
vis[fy]|=vis[fx];
f[fx]=fy;
}
else vis[fy]=1;
d[a[i]]++;d[b[i]]++;
}
ll ans=0;
for(int i=1;i<=k;i++){
ans+=1LL*w[i]*(d[i]-1);
if(f[i]==i&&!vis[i]){
ans+=mx[i];
}
}
printf("%lld\n",ans);
return 0;
}