三维血管中轴线特征描述

本文探讨了三维血管中轴线的特征描述,包括凸性和对称性两个关键指标。通过分析横截线上的灰度分布,计算抛物线的二次项系数作为凸性特征,并结合血管方向和半径选择最优值。对称性则通过比较中心对称点的灰度差值来衡量。最后,介绍了基于最小二乘法和LU分解的公式推导及代码实现过程。
摘要由CSDN通过智能技术生成

三维血管中轴线特征描述

原理

  • 1 凸性:
    (1) 基于观察,对于血管上的一点,以该点为中心,在与血管方向垂直的一维横截线上的灰度分布,符合抛物线特征。我们使用抛物线方程的二次项系数作为描述血管点的特征量,并将其称为该点在该方向上的凸性。
    (2) 由于血管具有方向性,所以对于某一点,需要考虑横街线的方向。所以在计算所有方向上的凸性值后,选取最大的N个方向的乘积,作为凸性值。
    (3) 由于血管粗细不同,所以对于某一点,需要考虑横截线的半径。所以在计算某一半径范围内的所有凸性值后,选取最大的凸性值,作为该点的凸性值。
    (4) 设半径范围为[ Rmin,Rmax ], 而方向为 θi ,N为选取计算最终凸性特征值的方向数。
    则最终的凸性特征值为:
    Convexity=ri=1NMax{ Cr,r[Rmin,Rmax]}(1)

    注意:对于血管背景点灰度比血管高的情况下(如二维),我们计算的是凸性的最大值,对于血管背景点灰度比血管低的情况下(如三维),我们计算的是凸性的最小值(因为此时二次项系数是负的)
  • 2 对称性
    (1) 对称性基于凸性中的横截线的概念来计算,在凸性的计算中,我们可以得到凸性最大值的半径,利用该半径,计算以该点为中心的两侧中心对称的点的灰度差值来计算对称性。对称差值越小,则说明对称性越好。
    (2) 设在[ Rmin,Rmax ]中,在半径 Rmc 处取得最大的凸性值。
    Symmetry=RR[0,Rmc]|L+(p,R,θ)L(p,R,θ)|(2)

实现

  • 1公式推导
    对于图像上的一点 p , 半径为 r 的横截线,根据其灰度值,求得其二次拟合的二次项系数。
    (1) 用到方法:a. 最小二乘法 b. 线性方程组的求解 c.矩阵的LU分解
    即对于二维数组
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值