三维血管中轴线特征描述
原理
- 1 凸性:
(1) 基于观察,对于血管上的一点,以该点为中心,在与血管方向垂直的一维横截线上的灰度分布,符合抛物线特征。我们使用抛物线方程的二次项系数作为描述血管点的特征量,并将其称为该点在该方向上的凸性。
(2) 由于血管具有方向性,所以对于某一点,需要考虑横街线的方向。所以在计算所有方向上的凸性值后,选取最大的N个方向的乘积,作为凸性值。
(3) 由于血管粗细不同,所以对于某一点,需要考虑横截线的半径。所以在计算某一半径范围内的所有凸性值后,选取最大的凸性值,作为该点的凸性值。
(4) 设半径范围为[ Rmin,Rmax ], 而方向为 θi ,N为选取计算最终凸性特征值的方向数。
则最终的凸性特征值为:
Convexity=r∗∏i=1NMax{ Cr,r∈[Rmin,Rmax]}(1)
注意:对于血管背景点灰度比血管高的情况下(如二维),我们计算的是凸性的最大值,对于血管背景点灰度比血管低的情况下(如三维),我们计算的是凸性的最小值(因为此时二次项系数是负的) - 2 对称性
(1) 对称性基于凸性中的横截线的概念来计算,在凸性的计算中,我们可以得到凸性最大值的半径,利用该半径,计算以该点为中心的两侧中心对称的点的灰度差值来计算对称性。对称差值越小,则说明对称性越好。
(2) 设在[ Rmin,Rmax ]中,在半径 Rmc 处取得最大的凸性值。
Symmetry=R∑R∈[0,Rmc]|L+(p,R,θ)−L−(p,R,θ)|(2)
实现
- 1公式推导
对于图像上的一点 p , 半径为r 的横截线,根据其灰度值,求得其二次拟合的二次项系数。
(1) 用到方法:a. 最小二乘法 b. 线性方程组的求解 c.矩阵的LU分解
即对于二维数组