2019年FLAG

新年伊始,flag当立!

纷纷扰扰的2018已经过去,暗潮涌动的2019已经来临,为了今天也为了未来,鞭策自己好好学习,

多写博客,再次立下一堆flag,看看能实现几个

1.博客点击量超10万

   目前总点击20000多,少的可怜

2.博客粉丝破100

   望天,水平有限,只能先定个小目标。新的一年希望能帮到更多人,得到更多人认可。

3.发布博客数量超100

   目前数量20多,一直都想不起来写,今年多积累些东西,好好写一写,提高写作的水平,方便大家理解,

   提高技术深度,不要泛泛而谈。

4.月薪增长50%

   目前薪资在吾辈总垫底,新的一年立个小小的flag,希望工资显著增长一下,野心还是太小,不敢期望爆炸式的增长啊

5.还清亲戚朋友欠款

   因为买房欠了亲戚一些钱,新的一年,希望能还上这些欠款,房贷就不奢望一下还清了,没那么多dog shit运

6.买台车

    宝宝近期就要降生了,虽然小崽子的名字还没想好,但是为了以后方便照顾她,需要买台车,这样干什么都方便些

7.陪老婆出去旅游一次

   一直和老婆说哦陪她出去旅游,一直没时间,加上她怀孕哪里也去不了,自然就没法出去旅游,新的一年,小宝宝也出生了, 一家人出去短途旅游一下,嗯,开新车

8.接爸妈来南方

   我居住在深圳,老爸和老妈一直在北方,离我们远,家人没法互相照应,如果能离得近些,生活上的照应会方便很多

9.减重5*ln100斤

   因为老婆怀孕,我的体重比她增长的还多,现在高的令人汗颜,希望新的一年多减体重,以好的的形象面对小宝宝

10.学个新技能

    人生在世,不能事事都求有意义,偶尔搞点有趣的事情,不需要有什么用处,娱乐自己,调剂生活,打算学点音乐或绘画,不要求多精通,耍一耍就行

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值