均值滤波

均值滤波是一种常见的图像处理技术,通过计算像素及其周围像素的平均值来消除图像噪声,达到平滑和模糊效果。3X3的矩阵作为Kernel进行采样,可调整迭代次数和Kernel大小来影响滤波效果。多次迭代或增大Kernel尺寸能增强滤波效果。
摘要由CSDN通过智能技术生成

均值滤波

均值滤波,是图像处理中最常用的手段,从频率域观点来看均值滤波是一种低通滤波器,高频信号将会去掉,因此可以帮助消除图像尖锐噪声,实现图像平滑,模糊等功能。理想的均值滤波是用每个像素和它周围像素计算出来的平均值替换图像中每个像素。采样Kernel数据通常是3X3的矩阵,如下表示:

从左到右从上到下计算图像中的每个像素,最终得到处理后的图像。均值滤波可以加上两个参数,即迭代次数,Kernel数据大小。一个相同的Kernel,但是多次迭代就会效果越来越好。同样,迭代次数相同,Kernel矩阵越大,均值滤波的效果就越明显。

 

 

 

 function average(imgData, size) {
            pixelData = tmppixelData = imgData.data,
                size = size || 3;
            var count = Math.pow(size, 2);
            for (var i = 0; i < canvas.height; i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值