机器学习:PCA(实例:MNIST数据集)

本文通过实例介绍了如何使用PCA对MNIST数据集进行降维处理。在未降维的情况下,kNN算法的识别准确率为0.9688,而经过PCA降维保留90%信息后,识别准确率提高到0.9728,同时预测时间显著缩短。PCA降维不仅减少了数据维度,还可能消除数据噪声,提升识别准确率。
摘要由CSDN通过智能技术生成

一、数据

  • 获取数据
    import numpy as np
    from sklearn.datasets import fetch_mldata
    
    mnist = fetch_mldata("MNIST original")
  1. sklearn 的 datasets 中,一个特有的方法:fetch_mldata,使用此方法可以直接从一个官方网站中下载各种机器学习数据;
  2. 格式:datas = fetch_mldata("字符串");

 

  • 查看数据
    mnist
    # 输出:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值