代码随想录训练营第二十四天|回溯算法:理论基础,77. 组合

文章介绍了如何使用回溯算法来解决组合问题,具体是C++实现的结合问题,通过递归和回溯操作从1到n中选取k个数的所有组合。代码示例展示了两种方法,包括一种设置全局变量以优化性能的方式。
摘要由CSDN通过智能技术生成

理论基础

“组合无序,排列有序”

模板:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

77.组合:

题目链接:

代码:

class Solution {
public:
    vector<vector<int>> combine(int n, int k) {
        vector<vector<int>> result;
        vector<int> group;
        groups(result,group,n,k,1);
        return result;
    }
    void groups(vector<vector<int>>& result, vector<int> group, int n ,int k, int startIndex)
    {
        int size = group.size();
        if(size == k)
        {
            result.push_back(group);
            return;
        }
        for(int i = startIndex ; i <= n; ++i)
        {
            group.push_back(i);
            groups(result,group,n,k,i+1);
            group.pop_back();
        }
    }
};

注意这个startIndex 比较关键

class Solution {
private:
    vector<vector<int>> result; // 存放符合条件结果的集合
    vector<int> path; // 用来存放符合条件结果
    void backtracking(int n, int k, int startIndex) {
        if (path.size() == k) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i <= n; i++) {
            path.push_back(i); // 处理节点 
            backtracking(n, k, i + 1); // 递归
            path.pop_back(); // 回溯,撤销处理的节点
        }
    }
public:
    vector<vector<int>> combine(int n, int k) {
        result.clear(); // 可以不写
        path.clear();   // 可以不写
        backtracking(n, k, 1);
        return result;
    }
};

代码随想录这个是设置了两个全局变量 性能更好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值