代码随想录训练营第五十七天|647. 回文子串,516.最长回文子序列,动态规划总结篇

文章详细介绍了如何使用动态规划方法解决两个LeetCode上的编程问题:647.回文子串和516.最长回文子序列。分别给出了两种不同实现的代码,包括基于二维数组的状态转移和双指针法。动态规划是解决问题的关键,通过比较字符是否相等来更新子问题的解。
摘要由CSDN通过智能技术生成

647. 回文子串

题目链接:力扣

代码:

class Solution {
public:
    int countSubstrings(string s) {
        int n = s.size();
        vector<vector<bool>> dp(n,vector<bool> (n,false));
        int result = 0;
        for(int i = n-1; i >= 0; i--)
        {
            for(int j = i ; j < n; j++)
            {
                if(s[i] == s[j])
                {
                    if(j-i <= 1)
                    {
                        result++;
                        dp[i][j] = true;
                    }else if(dp[i+1][j-1])
                    {
                        result++;
                        dp[i][j] = true;
                    }
                }
            }
        }
        return result;
    }
};

代码(双指针法):

class Solution {
public:
    int extent(string s, int i , int j ,int n)
    {
        int res = 0;
        while(i >= 0 && j < n && s[i] == s[j])
        {
            res++;
            j++;
            i--;
        }
        return res;
    }
     int countSubstrings(string s) {
        int n = s.size();
        int result = 0;
        for(int i = 0 ; i < n; i++)
        {
            result += extent(s,i,i,n);
            result += extent(s,i,i+1,n);
        }
        
        return result;
    }
};

516.最长回文子序列

题目链接:力扣

代码:

class Solution {
public:
    
    int longestPalindromeSubseq(string s) {
        int n = s.size();
        int result = 0;
        vector<vector<int>> dp(n,vector<int>(n,0));
        for(int i = 0 ; i < n ; i++)
            dp[i][i] = 1;
        //dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]
        for(int i = n-1; i >= 0; i--)
        {
            for(int j = i+1; j < n ; j++)
            {
                if (s[i] == s[j]) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][n - 1];
    }
};

动态规划总结篇

题目链接:代码随想录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值