首先感谢这篇题解,是思路来源
看到等差数列,就会想到差分,又有区间加,很容易想到线段树维护差分。再注意点细节,\(A\)操作完美解决
然后就是爆炸恶心的\(B\)操作,之前看一堆题解的解释都不怎么明白,就自己脑补+看上面那篇题解乱搞出了个相对合理点的解释……
用\(0/1/2/3\)分别表示一个差分区间统计答案时,是否跨越原区间左右端点。\(s[0/1/2/3]\)分别表示每个状态的最少可以划分出来的等差数列个数。
合并方式如下:
/*定义差分b[i]=a[i+1]-a[i]
假设要查询区间[S,T],对应到差分数组实际查询的是区间[S,T-1]
所以一个节点如果在差分数组上维护的区间是[a,b],在原数组上维护的实际上是区间[a,b+1]*/
//s[0]表示原数组中区间为(S,T)的答案
//s[1]表示原数组中区间为(S,T]的答案
//s[2]表示原数组中区间为[S,T)的答案
//s[3]表示原数组中区间为[S,T]的答案
s[0]= min(s[1]+ s[2]- ( vr==Y.vl), min(s[0]+ s[2], s[1]+s[0] ) );
s[1]= min(s[1]+ Y.s[3]- ( vr==Y.vl), min(s[1]+ s[1], s[0]+s[3] ) );
s[2]= min(s[3]+ s[2]- ( vr==Y.vl), min(s[2]+ s[2], s[3]+s[0] ) );
s[3]= min(s[3]+ s[3]- ( vr==Y.vl), min(s[3]+ s[1], s[2]+s[3] ) );
输出时直接输出\(s[3]\)就OK了
\(p.s.\) \(n==1\)时不用建树,否则\(RE\)
代码:
#include <bits/stdc++.h>
#define N 100005
using namespace std;
int a[N],n;
#define bas int l,int r,int o
#define lson l,mid,o<<1
#define rson mid+1,r,o<<1|1
struct node{
int s[4];
long long vl,vr;
node operator +(const node &Y)const{
node Z;
Z.vl=vl,Z.vr=Y.vr;
Z.s[0]= min(s[1]+ Y.s[2]- ( vr==Y.vl), min(s[0]+ Y.s[2], s[1]+Y.s[0] ) );
Z.s[1]= min(s[1]+ Y.s[3]- ( vr==Y.vl), min(s[1]+ Y.s[1], s[0]+Y.s[3] ) );
Z.s[2]= min(s[3]+ Y.s[2]- ( vr==Y.vl), min(s[2]+ Y.s[2], s[3]+Y.s[0] ) );
Z.s[3]= min(s[3]+ Y.s[3]- ( vr==Y.vl), min(s[3]+ Y.s[1], s[2]+Y.s[3] ) );
return Z;
}
};
struct qwq{
long long tag[N<<2];
node t[N<<2];
void pushdown(int o){
t[o<<1].vl+= tag[o], t[o<<1].vr+= tag[o];
t[o<<1|1].vl+= tag[o], t[o<<1|1].vr+= tag[o];
tag[o<<1]+= tag[o], tag[o<<1|1]+= tag[o];
tag[o]=0;
}
void build(bas){
tag[o]=0;
if(l==r){
t[o].vl= t[o].vr= a[l];
t[o].s[1]= t[o].s[2]= t[o].s[3]= 1, t[o].s[0]=0;//两个数时和一个数时等差数列数量都是1
return;
}
int mid=(l+r)>>1;
build(lson),build(rson);
t[o]= t[o<<1]+ t[o<<1|1];
}
void update(bas,int L,int R,long long x){
if(L<=l && r<=R){
t[o].vl+= x, t[o].vr+= x;
tag[o]+= x;
return;
}
if(tag[o]) pushdown(o);
int mid= (l+r)>>1;
if(L<= mid) update(lson,L,R,x);
if(R> mid) update(rson,L,R,x);
t[o]= t[o<<1]+ t[o<<1|1];
}
node query(bas,int L,int R){
if(L<= l && r<= R) return t[o];
if(tag[o]) pushdown(o);
int mid= (l+r)>>1;
if(R<=mid) return query(lson,L,R);
else{
if(L>mid) return query(rson,L,R);
else return query(lson,L,R)+query(rson,L,R);
}
}
}T;
int main(){
int q,s,t,c,d,ans,i;
char op;
scanf("%d",&n);
for(i=1;i<=n;++i) scanf("%d",&a[i]);
for(i=1;i<n;++i) a[i]=a[i+1]-a[i];
if(n!=1) T.build(1,n-1,1);
scanf("%d",&q);
while(q--){
scanf("\n%c",&op);
if(op=='A'){
scanf("%d%d%d%d",&s,&t,&c,&d);
if(s!=1) T.update(1,n-1,1,s-1,s-1,c);
if(t!=n) T.update(1,n-1,1,t,t,1ll*d*s-1ll*d*t-c);
if(s!=t) T.update(1,n-1,1,s,t-1,d);
} else{
scanf("%d%d",&s,&t);
if(t- s+ 1==1) ans=1;
else{
node res=T.query(1,n-1,1,s,t-1);
ans=min((t-s+2)/2,res.s[3]);
}
printf("%d\n",ans);
}
}
}