基于EEMD和樽海鞘算法优化SVM的滚动轴承故障诊断python

该博客介绍了如何结合集成经验模态分解EEMD和樽海鞘(SSA)算法来优化支持向量机(SVM),用于滚动轴承故障诊断。樽海鞘算法模拟生物行为,通过全局和局部探索避免局部最优。在轴承故障诊断中,使用西储大学的驱动端轴承数据,计算EEMD分解后的IMF分量均方根值作为特征,展示出较好的诊断效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、集成经验模态分解EEMD

详细请见博客EEMD.

2、樽海鞘算法SSA

2.1、背景原理

        该算法模拟了樽海鞘链的群体行为,是一种较新颖的群智能优化算法。每次迭代中,领导者指导追随者,以一种链式行为,向食物移动。移动过程中,领导者进行全局探索,而追随者则充分进行局部探索,大大减少了陷入局部最优的情况。

2.2、搜索机制

2.2.1、种群初始化

                                          X=rand(0,1)\cdot (ub-lb)+lb

X为初始化种群,ub为参数上限,lb为参数下限,维度由参数和种群数量决定。

2.2.2、领导者位置更新

                                

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

似水不惧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值