1、集成经验模态分解EEMD
详细请见博客EEMD.
2、樽海鞘算法SSA
2.1、背景原理
该算法模拟了樽海鞘链的群体行为,是一种较新颖的群智能优化算法。每次迭代中,领导者指导追随者,以一种链式行为,向食物移动。移动过程中,领导者进行全局探索,而追随者则充分进行局部探索,大大减少了陷入局部最优的情况。
2.2、搜索机制
2.2.1、种群初始化
X为初始化种群,ub为参数上限,lb为参数下限,维度由参数和种群数量决定。
2.2.2、领导者位置更新