- int inf = 0x3f3f3f3f; 代表无穷大
- #define pii pair<int,int>指将两者合而为一,常用于坐标,则pii相当于是一个类型了
//(x,y) pii Point=make_pair(x,y)
//获取x x=Point.first;
//获取y y=Point.second; - 看到挺不错的一篇文章,讲解了广度优先搜索和深度优先搜索https://www.jianshu.com/p/bff70b786bb6
- 广度优先搜索和深度优先搜索的区别:
1.广度优先搜索为队列,queue。
深度优先搜索为堆栈,stack。
2.广度优先搜索为所有点遍历一遍。
深度优先搜索为返回父节点
建边方式:
#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int N=100000+10;
const int M=100+10;
vector<int>G[N];
//x->y
void way1(){
G[x].push_back(y); //加边方式
int sz=G[x].size(); //遍历方式
for(int i=0;i<sz;i++){
int to=G[x][i];
}
}
//链式前向星
int tot,ver[N<<1],Next[N<<1],head[N];
//tot标号,ver[]存储每个编号的边连出去的点,Next[]往前连接的边的编号,head[]最后一个编号的边
void add(int u,int v){ //添加一条从u->v的边
++tot;ver[tot]=v;
Next[tot]=head[u];head[u]=tot;
}
void way2(){
add(x,y); //加边方式
for(int i=head[x];i;i=Next[i]){ //遍历方式
int to=ver[i];
}
}
int main(){
memset(head,0,sizeof head);
}
#include<iostream>
#include<stdio.h>
#include<math.h>
#include<queue>
#include<string.h> //memset函数头文件
#define pii pair<int,int>//将两者合而为一
//(x,y) pii Point=make_pair(x,y)
//获取x x=Point.first;
//获取y y=Point.second;
using namespace std;
const int N=200+10;
const int M=10;
const int inf=0x3f3f3f3f; //无穷大 ,四个3f
char s[N][N];//图形矩阵
int startx[M],starty[M];//起点坐标
int n,m,dif[M][N][N];//每个点代表的步数
int jx[M]={0,0,1,-1};
int jy[M]={1,-1,0,0};//x和y的加减
void bfs(int id)
{
queue<pii>qu;
qu.push(make_pair(startx[id],starty[id]));//进
dif[id][startx[id]][starty[id]]=0;//定义起点为0
while(!qu.empty())
{
int x=qu.front().first,y=qu.front().second;
qu.pop();//出
for(int i=0;i<4;i++)
{
int xx=x+jx[i],yy=y+jy[i];//下一步要走的点
if(xx>0&&xx<=n&&yy<=m&&yy>0&&s[xx][yy]!='#'&&dif[id][xx][yy]==inf)
{
dif[id][xx][yy]=dif[id][x][y]+1;
qu.push(make_pair(xx,yy));
}
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)//输入n行m列
{
memset(dif,inf,sizeof dif);//把dif数组初始化为无穷大
for(int i=1;i<=n;i++) scanf("%s",s[i]+1);//输入矩阵,矩阵起点为(1,1)
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(s[i][j]=='Y') startx[0]=i,starty[0]=j;
if(s[i][j]=='M') startx[1]=i,starty[1]=j;//定义起点坐标,Y用0表示,M用1表示
}
}
bfs(0),bfs(1);
int num=inf;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(s[i][j]=='@')
num=min(num,dif[0][i][j]+dif[1][i][j]);
}
}
cout<<num*11<<endl;
}
}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdio.h>
#include<string.h>
using namespace std;
const int N=1e1+10;
int f[N],vis[N],n,cnt; //vis[i]代表第i列已经被第vis[i]行放置
bool check(int row,int col)//判断现在第row行第col列能不能放置
{
if(vis[col]) return false;
for(int i=1;i<=n;i++)
if(vis[i]&&abs(i-col)==abs(vis[i]-row)) return false;//判断45°斜线上是否有点
return true;
}
void dfs(int now) //指准备放置第now行
{
if(now==n+1)//是否对答案做出贡献
{
cnt++;
return;
}
for(int i=1;i<=n;i++)//第i列
{
if(check(now,i))
{
vis[i]=now; //第i列已经由第now行放置
dfs(now+1); //放置下一行
vis[i]=0; //还原
}
}
}
int main()
{
for(n=1;n<=10;n++)
{
memset(vis,0,sizeof vis);
cnt=0;
dfs(1);
f[n]=cnt;
}
int x;
while(scanf("%d",&x)!=EOF&&x)
{
printf("%d\n",f[x]);
}
return 0;
}