- 博客(391)
- 资源 (8)
- 收藏
- 关注
原创 『NLP学习笔记』Triton推理服务器加速模型推理
NVIDIA Triton(英伟达官网)推理服务器在生产中提供快速且可扩展的 AI。开源推理服务软件 Triton Inference Server 通过使团队能够从任何框架 (TensorFlow、NVIDIA TensorRT、PyTorch、ONNX、XGBoost、Python、自定义等) 在任何基于 GPU 或 CPU 的基础设施上部署经过训练的 AI 模型,从而简化 AI 推理(云、数据中心或边缘)。
2022-03-22 00:21:16 3451 1
原创 〖TensorFlow2.0笔记23〗(更新版)ResNet-18实现Cifar10(94%)和Cifar100(75%)分类
ResNet-18实现CIFAR-10(94%)和CIFAR-100(75%)分类!
2020-08-20 10:09:59 6769 7
原创 『论文笔记』CBAM:Convolutional Block Attention Module(注意力机制)+TensorFlow2.0复现
本文提出了卷积块注意模块(CBAM),这是一个简单而有效的前馈卷积神经网络注意模块。在给定中间特征图的情况下,我们的模块按照通道和空间两个独立的维度依次推断注意图,然后将注意图乘入输入特征图进行自适应特征细化。因为CBAM是一个轻量级的通用模块,它可以无缝地集成到任何CNN架构中,开销可以忽略不计,并且可以与基本CNNs一起进行端到端的培训。我们通过在ImageNet-1K、MS COCO检测和VOC 2007检测数据集上的大量实验来验证我们的CBAM。
2019-12-30 15:07:16 13698 26
原创 『自己的工作3』梯度下降实现SVM多分类+最详细的数学推导+Python实战(鸢尾花数据集)
支持向量机(Support Vector Machine, SVM)的基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大。SVM的目标是寻找一个最优化超平面在空间中分割两类数据,这个最优化超平面需要满足的条件是:离其最近的点到其的距离最大化,这些点被称为支持向量。SVM是用来解决二分类问题的有监督学习算法,同时它可以通过one-vs-all策略应用到多分类问题中。本文主要介绍如何使用梯度下降法对SVM多分类问题进行优化。
2019-11-28 19:53:45 5605 8
原创 『矩阵论笔记』线性判别分析(LDA)最全解读+python实战二分类代码+补充:矩阵求导可以参考
线性判别分析(Linear Discriminant Analysis 简称LDA)是一种经典的线性学习方法,在二分类问题上因为最早由【Fisher,1936年】提出,所以也称为“Fisher 判别分析!”Fisher(费歇)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样本点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。
2019-05-27 20:59:10 5983 5
原创 『ML笔记』Python凸优化求解cvxopt包+实战SVM+补充np.dot, np.matmul, np.multiply!
Python凸优化求解cvxopt包+实战SVM+补充np.dot, np.matmul, np.multiply!
2019-03-16 15:47:01 4427 12
原创 『矩阵论笔记』解读奇异值分解(SVD)+Python实战
奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解(Matrix Decomposition),奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。这篇文章主要说下奇异值分解,这个方法在机器学习的一些算法里占有重要地位。
2019-03-14 21:44:04 5322 6
原创 『大模型笔记』Docker如何清理Build Cache!
首先,你可以运行以下命令来清理未使用的镜像、容器、卷和构建缓存:docker image prune -a这些命令应该能够帮助你释放下的大量空间。删除构建缓存的主要影响是下次构建镜像时会变慢,但不会对现有的容器或镜像运行产生负面影响。如果你需要空间,且可以接受稍长的构建时间,删除缓存是一个合理的选择。
2024-09-26 18:05:50 253
原创 『大模型笔记』提示工程师是最短命的职业吗?提示工程已经死了吗?
AI 时代,总是在搞大新闻,一会是 AI 要替代程序员了,一会是提示词工程师是最有潜力的职业,一会是提示词工程师是最短命的职业。然而真正去透过现象看本质,里面有太多的以偏概全,太多噱头。就提示工程这事来说,会像编程一样,还会在很长一段时间存在并发挥巨大的价值。真正的提示工程,本质还是怎么让 AI 懂你,怎么让 AI 听话。在让别人懂我们和让别人听话这事上,我们已经奋斗了几千年了,至今还在努力中,也许 AI 会容易一点吧。
2024-09-25 17:28:59 35
原创 『大模型笔记』谈谈OpenAI o1的价值意义及RL 的Scaling law
大模型笔记』谈谈OpenAI o1的价值意义及RL 的Scaling law。
2024-09-25 15:51:58 191
原创 『大模型笔记』林纳斯·托瓦兹(Linux之父):谈论热议与人工智能的未来!
林纳斯·托瓦兹谈论了围绕人工智能和大语言模型的热议,以及人工智能在 Linux 上的未来。ChatGPT 及其他 AI 机器人是否会促进 Linux 内核的开发?让我们来听听 Linux 的创造者怎么说。
2024-08-30 14:28:49 371 1
原创 『大模型笔记』Prompt Engineering具体实施方案综述!
本文深入探讨当前最前沿的prompt engineering方案,结合OpenAI、Anthropic和Google等大模型公司的资料,以及开源社区中宝贵的prompt技巧分享,全面解析这一领域的实践策略。
2024-08-27 09:53:59 488
原创 『大模型笔记』dockerfile中的ENTRYPOINT和CMD有什么区别?|dockerfile设置时区!
主要阐述了 Dockerfile 中 `ENTRYPOINT` 和 `CMD` 指令的区别、使用方式以及如何结合使用,以及它们对容器启动行为的影响。
2024-08-22 14:01:47 237
原创 『大模型笔记』从零开始构建AI智能体!
本文介绍了如何从零开始构建一个 AI 智能体,包括智能体的工作原理、Python 代码实现以及如何使用大语言模型驱动智能体来影响其环境。
2024-08-15 14:40:16 551
原创 『大模型笔记』WizardLM:使大型预训练语言模型能够遵循复杂的指令
Evol-Instruct是一种新颖的方法,使用LLMs代替人类自动批量生产各种难度级别和技能范围的开放域指令,以提高性能LLMs。您可以使用我们提供的Evol 脚本轻松踏上自己的进化之旅。
2024-08-14 15:51:29 185
原创 『大模型笔记』基于LLM生成真实世界数据的合成问答数据!
对于大语言模型(LLM)或小型语言模型(SLM)的微调、RAG或评估,通常需要从真实世界的原始数据中生成问答格式的数据。然而,当需要从头创建数据集而非使用现成的数据集时,您将面临诸多挑战。本次动手实验旨在通过展示如何从复杂的非结构化数据中创建或增强问答数据集来减轻部分工作负担,并假设这是一个真实的场景。该示例旨在为开发者和数据科学家以及相关领域的从业者提供逐步指导,使他们在稍许帮助下也能尝试完成。我们旨在通过微调或RAG来提高模型的性能,提供高质量的数据集。然而,没有预先存在的数据集;我们只有。
2024-08-13 16:31:37 308
原创 『大模型笔记』虚拟机(Virtual Machine,VM)与Docker对比!
首先,这两种技术都有一个共同点,那就是虚拟化(virtualization)。所谓虚拟化,就是通过软件创建一个抽象层的过程。对于虚拟机来说,这个抽象层或抽象软件被称为“虚拟机管理程序”(hypervisor)。简单来说,虚拟机管理程序帮助虚拟机模拟物理计算机的运行。在虚拟机管理程序之下,我们有一些硬件资源,虚拟机管理程序负责在单个物理主机上管理不同虚拟机之间的资源分配。因此,在虚拟机管理程序之上,我们可以运行多个虚拟机。每个虚拟机都有自己的操作系统和虚拟硬件,比如虚拟 CPU、虚拟存储等。
2024-08-13 15:41:30 232
原创 『大模型笔记』人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF)
人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF)
2024-08-09 11:31:32 222
原创 『大模型笔记』从API到Agent:万字长文洞悉LangChain工程化设计
大模型笔记』从API到Agent:万字长文洞悉LangChain工程化设计。
2024-08-07 14:03:30 116
原创 『Python学习笔记』Python环境管理器—Poetry入门指南
管理第三方模块的安装与卸载管理虚拟环境管理虚拟环境的依赖管理打包与发布。其中最重要的是 虚拟环境的依赖。
2024-08-05 11:31:04 856
原创 『大模型笔记』什么是大规模生成式AI!
生成式 AI 算法可以扩展到数百个 GPU 上。实际上,你可以将它们部署在 V100、A100,甚至是 Nvidia 提供的不同 H 系列 GPU 上,或者其他供应商的硬件上。但即便如此,每秒成千上万种不同类型的请求也会给系统带来压力,同时也会对底层硬件产生负担。为了解决这个问题,我们可以采用几种策略。首先,介绍一种叫做批处理式生成式 AI 系统的方法。在这种情况下,我们希望创建由这些大语言模型生成的非常动态的填空句子。然后我们将它们存储在内容分发网络(CDN)上,并在全球范围内缓存。
2024-08-02 23:47:27 164
原创 『大模型笔记』LLM秘密:温度、Top-K和Top-P抽样技术解析!
总结一下,使用温度、Top-K和Top-P技术的随机采样为大语言模型生成输出提供了不同的选择。在视频的最后部分,我将讨论每种技术的优缺点,以便您更好地了解何时使用每种方法以及可能的限制。温度参数的优点包括增加模型的创造力,较高温度引入更多随机性,促进创造性和多样性输出,还可以防止模型变得过于确定性。然而,缺点是过高温度可能导致输出不连贯,因为模型更可能选择不太可能的单词,增加随机性可能导致文本缺乏上下文或意义。
2024-07-19 13:46:09 421
原创 『大模型笔记』GraphRAG:用于复杂数据发现的新工具现已在GitHub上发布
GraphRAG:用于复杂数据发现的新工具现已在GitHub上发布
2024-07-09 14:10:01 2110
原创 『大模型笔记』GraphRAG:利用复杂信息进行发现的新方法!
我们通过向两个系统提出以下问题来说明整个数据集的推理能力:查询:“数据中的前五大主题是什么?
2024-07-09 13:52:54 645
原创 『大模型笔记』你需要的不是智能体,而是一个适合 AI 的工作流
从上面的例子可以看出,真正要用好 AI,让 AI 发挥最大效能,核心是还是要基于你要解决的问题,重新设计一个适合 AI 的工作流,让 AI 在工作流中完成它最擅长的工作,至于是不是智能体,是不是大语言模型,是不是 AI 帮你决策,都不是最重要的。
2024-07-08 14:21:25 610
原创 『大模型笔记』《Pytorch实用教程》(第二版)
时隔5年,历时4年,耗时2年的《Pytorch实用教程》第二版完成了。在第一版的精华之上,增加了丰富详实的深度学习应用案例和推理部署框架,使本书更系统性的涵盖深度学习工程师所涉及的知识面。如人工智能技术发展一浪接一浪,《Pytorch实用教程》第二版不是结束,而是开始,开启新的技术、新的领域、新的篇章,希望未来能继续与大家一起在人工智能技术里学习、进步。
2024-07-07 13:53:28 382
原创 『大模型笔记』2024大模型AI工程师必备技能!
文章首先介绍了大语言模型(LLM)的基本概念,并提出了一个五层结构的框架来帮助理解 LLM 在不同应用中的使用方式。第一层是问答引擎(Q&A),即用户向 LLM 提问并获得答案。第二层是聊天机器人,它在 Q&A 的基础上增加了短期记忆,能够进行连续的对话交互。第三层是检索增强生成(RAG),它除了拥有 Q&A 和短期记忆外,还能够利用外部知识进行信息检索和生成回答。第四层是智能体(Agent),它将 LLM 与各种工具集成,能够执行具体的任务和操作。文章还讨论了函数调用(Function Calling)。
2024-07-04 09:21:50 260
原创 『大模型笔记』5 种人工智能公司(大模型领域)!
如果你没有时间,如果你想马上停止观看这个视频,那你需要知道的重点部分就是这个:什么是FACES框架?FACES框架实际上是反向开始的。F-A-C-E-S。在底层,我们有基础模型创新者(foundational model innovators)。这些人是构建基础模型的人。然后,我们有自适应微调者(adaptive fine tuners),他们在这些基础模型上进行构建。接着是便捷的API提供者和API包装器(convenient API providers and API wrappers)。
2024-06-20 10:01:18 163
原创 『大模型笔记』斯坦福大学教授李飞飞在2024年数据与人工智能峰会上的人工智能历史与未来
在五亿年前,视觉的出现不仅将黑暗的世界照亮,也开启了一个深远的进化过程,这是动物世界中智能的发展。人工智能在过去的十年中取得的惊人进步同样令人震惊。但是,真正的数字寒武纪大爆发只有在计算机和机器人都发展出我们所有人所拥有的空间智能时,才能实现其最大的可能性。现在是时候让我们的数字伙伴学会如何理解并与这个我们称之为家的三维空间进行互动,以及为我们大家创造许多新的世界去探索了。实现这个未来的道路并非平坦,需要我们共同努力,发展始终以人为核心的技术。
2024-06-19 14:54:09 166
原创 『大模型笔记』如何让小型语言模型发挥作用!
总结一下,我展示了我们如何在没有依赖极大规模预训练模型和许多其他规模化方法的情况下学习总结文档。这两篇论文背后的真正研究问题是如何学习抽象。因为现在的配方是让模型变得超级大。越大越好。但人类无法记住所有的上下文,例如一百万个tokens。没有人能记住这么多。你只是瞬间抽象掉我告诉你的所有东西,但仍然记得我刚才说的内容。这是我们尚未通过AI模型有效构建的人类智慧。我相信这是可能的。我们只是不够努力,因为我们被规模的魔力蒙蔽了眼睛。
2024-06-19 14:10:29 267
原创 『大模型笔记』Cohere的联合创始人Nick Frosst谈:AGI真的只是幻想吗?
AGI(通用人工智能)的立场技术应用和现实世界问题Cohere公司及其活动Command-R模型及其功能检索增强生成(RAG)创始团队的背景工具使用的演变哲学探讨建设日活动开发者指导数据获取和准备多语言支持数据科学与软件工程的角色模型的未来发展技术成熟度和基准测试开源工具包。
2024-06-17 11:32:08 102
2024大模型AI工程师必备技能
2024-07-03
5种人工智能公司(大模型领域)
2024-06-21
Fast LLM Serving with vLLM and PagedAttention
2024-05-27
Openai CEO奥特曼和Brad访谈(2024年4月17日),哪些公司将被 OpenAI 淘汰?
2024-04-19
【东方财富证券】从硬件、算法、应用角度看ChatGPT浪潮引领AIGC革新投资机遇
2024-03-20
【钛媒体国际智库】中美AI大模型应用比较研究报告
2024-03-20
【中国信通院2023】人工智能大模型赋能医疗健康产业白皮书
2024-03-20
【SuperCLUE团队】中文大模型基准测评2023年度报告
2024-03-20
【中国信息通信研究】2023大模型落地应用案例集
2024-03-20
【中国信通院2022】人工智能AI框架发展白皮书
2024-03-20
剑桥大学:2023State of AI Report
2024-03-20
清华⼤学计算机系 知识⼯程实验室(KEG)唐杰《从千亿模型到ChatGPT的⼀点思考》
2024-03-20
AIGC算力时代系列报告-ChatGPT芯片算力研究框架
2024-03-20
CS324课程大模型中的Scaling Law(规模法则)课件
2024-03-20
清华大学新闻与传播学院发布的AIGC发展研究资料,2024年最新,200多页
2024-03-20
图像处理透视变换(Python+Opencv)
2023-02-10
张量分解_张量CP分解_张量Tucker分解_详细介绍!
2021-07-13
VNC-Viewer-6.20.113-Linux-x86.deb
2020-06-29
VNC-Server-6.3.2-Linux-x64.deb
2020-06-29
BP期末论文算法word文档+代码
2019-01-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人