自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AI新视界

种一棵树最好的时间是十年前,其次是现在!

  • 博客(391)
  • 资源 (8)
  • 收藏
  • 关注

原创 『Transformer系列』Transformer系列技术博文汇总!

Transformer系列技术博文汇总!

2024-06-04 16:22:04 544

原创 『NLP学习笔记』Triton推理服务器加速模型推理

NVIDIA Triton(英伟达官网)推理服务器在生产中提供快速且可扩展的 AI。开源推理服务软件 Triton Inference Server 通过使团队能够从任何框架 (TensorFlow、NVIDIA TensorRT、PyTorch、ONNX、XGBoost、Python、自定义等) 在任何基于 GPU 或 CPU 的基础设施上部署经过训练的 AI 模型,从而简化 AI 推理(云、数据中心或边缘)。

2022-03-22 00:21:16 3451 1

原创 『矩阵论笔记』上篇:张量CP分解的详细推导以及Python实现

张量CP分解的详细数学推导以及Python实现(上集)

2021-07-11 22:35:48 3796 9

原创 〖TensorFlow2.0笔记23〗(更新版)ResNet-18实现Cifar10(94%)和Cifar100(75%)分类

ResNet-18实现CIFAR-10(94%)和CIFAR-100(75%)分类!

2020-08-20 10:09:59 6769 7

原创 『论文笔记』CBAM:Convolutional Block Attention Module(注意力机制)+TensorFlow2.0复现

本文提出了卷积块注意模块(CBAM),这是一个简单而有效的前馈卷积神经网络注意模块。在给定中间特征图的情况下,我们的模块按照通道和空间两个独立的维度依次推断注意图,然后将注意图乘入输入特征图进行自适应特征细化。因为CBAM是一个轻量级的通用模块,它可以无缝地集成到任何CNN架构中,开销可以忽略不计,并且可以与基本CNNs一起进行端到端的培训。我们通过在ImageNet-1K、MS COCO检测和VOC 2007检测数据集上的大量实验来验证我们的CBAM。

2019-12-30 15:07:16 13698 26

原创 『自己的工作3』梯度下降实现SVM多分类+最详细的数学推导+Python实战(鸢尾花数据集)

支持向量机(Support Vector Machine, SVM)的基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大。SVM的目标是寻找一个最优化超平面在空间中分割两类数据,这个最优化超平面需要满足的条件是:离其最近的点到其的距离最大化,这些点被称为支持向量。SVM是用来解决二分类问题的有监督学习算法,同时它可以通过one-vs-all策略应用到多分类问题中。本文主要介绍如何使用梯度下降法对SVM多分类问题进行优化。

2019-11-28 19:53:45 5605 8

原创 〖TensorFlow2.0笔记23〗TensorFlow2.0学习笔记总结!

Tensorflow2.0全套课程学习笔记!

2019-11-10 16:38:31 16155 21

原创 『矩阵论笔记』线性判别分析(LDA)最全解读+python实战二分类代码+补充:矩阵求导可以参考

线性判别分析(Linear Discriminant Analysis 简称LDA)是一种经典的线性学习方法,在二分类问题上因为最早由【Fisher,1936年】提出,所以也称为“Fisher 判别分析!”Fisher(费歇)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样本点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。

2019-05-27 20:59:10 5983 5

原创 『ML笔记』Python凸优化求解cvxopt包+实战SVM+补充np.dot, np.matmul, np.multiply!

Python凸优化求解cvxopt包+实战SVM+补充np.dot, np.matmul, np.multiply!

2019-03-16 15:47:01 4427 12

原创 『矩阵论笔记』解读奇异值分解(SVD)+Python实战

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解(Matrix Decomposition),奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。这篇文章主要说下奇异值分解,这个方法在机器学习的一些算法里占有重要地位。

2019-03-14 21:44:04 5322 6

原创 『大模型笔记』全是细节 | 聊一聊做SFT的经验

全是细节 | 聊一聊做SFT的经验。

2024-10-08 15:49:19 4

原创 『大模型笔记』Docker如何清理Build Cache!

首先,你可以运行以下命令来清理未使用的镜像、容器、卷和构建缓存:docker image prune -a这些命令应该能够帮助你释放下的大量空间。删除构建缓存的主要影响是下次构建镜像时会变慢,但不会对现有的容器或镜像运行产生负面影响。如果你需要空间,且可以接受稍长的构建时间,删除缓存是一个合理的选择。

2024-09-26 18:05:50 253

原创 『大模型笔记』提示工程师是最短命的职业吗?提示工程已经死了吗?

AI 时代,总是在搞大新闻,一会是 AI 要替代程序员了,一会是提示词工程师是最有潜力的职业,一会是提示词工程师是最短命的职业。然而真正去透过现象看本质,里面有太多的以偏概全,太多噱头。就提示工程这事来说,会像编程一样,还会在很长一段时间存在并发挥巨大的价值。真正的提示工程,本质还是怎么让 AI 懂你,怎么让 AI 听话。在让别人懂我们和让别人听话这事上,我们已经奋斗了几千年了,至今还在努力中,也许 AI 会容易一点吧。

2024-09-25 17:28:59 35

原创 『大模型笔记』谈谈OpenAI o1的价值意义及RL 的Scaling law

大模型笔记』谈谈OpenAI o1的价值意义及RL 的Scaling law。

2024-09-25 15:51:58 191

原创 『大模型笔记』林纳斯·托瓦兹(Linux之父):谈论热议与人工智能的未来!

林纳斯·托瓦兹谈论了围绕人工智能和大语言模型的热议,以及人工智能在 Linux 上的未来。ChatGPT 及其他 AI 机器人是否会促进 Linux 内核的开发?让我们来听听 Linux 的创造者怎么说。

2024-08-30 14:28:49 371 1

原创 『大模型笔记』Prompt Engineering具体实施方案综述!

本文深入探讨当前最前沿的prompt engineering方案,结合OpenAI、Anthropic和Google等大模型公司的资料,以及开源社区中宝贵的prompt技巧分享,全面解析这一领域的实践策略。

2024-08-27 09:53:59 488

原创 『大模型笔记』dockerfile中的ENTRYPOINT和CMD有什么区别?|dockerfile设置时区!

主要阐述了 Dockerfile 中 `ENTRYPOINT` 和 `CMD` 指令的区别、使用方式以及如何结合使用,以及它们对容器启动行为的影响。

2024-08-22 14:01:47 237

原创 『大模型笔记』从零开始构建AI智能体!

本文介绍了如何从零开始构建一个 AI 智能体,包括智能体的工作原理、Python 代码实现以及如何使用大语言模型驱动智能体来影响其环境。

2024-08-15 14:40:16 551

原创 『大模型笔记』WizardLM:使大型预训练语言模型能够遵循复杂的指令

Evol-Instruct是一种新颖的方法,使用LLMs代替人类自动批量生产各种难度级别和技能范围的开放域指令,以提高性能LLMs。您可以使用我们提供的Evol 脚本轻松踏上自己的进化之旅。

2024-08-14 15:51:29 185

原创 『大模型笔记』基于LLM生成真实世界数据的合成问答数据!

对于大语言模型(LLM)或小型语言模型(SLM)的微调、RAG或评估,通常需要从真实世界的原始数据中生成问答格式的数据。然而,当需要从头创建数据集而非使用现成的数据集时,您将面临诸多挑战。本次动手实验旨在通过展示如何从复杂的非结构化数据中创建或增强问答数据集来减轻部分工作负担,并假设这是一个真实的场景。该示例旨在为开发者和数据科学家以及相关领域的从业者提供逐步指导,使他们在稍许帮助下也能尝试完成。我们旨在通过微调或RAG来提高模型的性能,提供高质量的数据集。然而,没有预先存在的数据集;我们只有。

2024-08-13 16:31:37 308

原创 『大模型笔记』虚拟机(Virtual Machine,VM)与Docker对比!

首先,这两种技术都有一个共同点,那就是虚拟化(virtualization)。所谓虚拟化,就是通过软件创建一个抽象层的过程。对于虚拟机来说,这个抽象层或抽象软件被称为“虚拟机管理程序”(hypervisor)。简单来说,虚拟机管理程序帮助虚拟机模拟物理计算机的运行。在虚拟机管理程序之下,我们有一些硬件资源,虚拟机管理程序负责在单个物理主机上管理不同虚拟机之间的资源分配。因此,在虚拟机管理程序之上,我们可以运行多个虚拟机。每个虚拟机都有自己的操作系统和虚拟硬件,比如虚拟 CPU、虚拟存储等。

2024-08-13 15:41:30 232

原创 『大模型笔记』人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF)

人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF)

2024-08-09 11:31:32 222

原创 『大模型笔记』从API到Agent:万字长文洞悉LangChain工程化设计

大模型笔记』从API到Agent:万字长文洞悉LangChain工程化设计。

2024-08-07 14:03:30 116

原创 『Python学习笔记』Python环境管理器—Poetry入门指南

管理第三方模块的安装与卸载管理虚拟环境管理虚拟环境的依赖管理打包与发布。其中最重要的是 虚拟环境的依赖。

2024-08-05 11:31:04 856

原创 『大模型笔记』什么是大规模生成式AI!

生成式 AI 算法可以扩展到数百个 GPU 上。实际上,你可以将它们部署在 V100、A100,甚至是 Nvidia 提供的不同 H 系列 GPU 上,或者其他供应商的硬件上。但即便如此,每秒成千上万种不同类型的请求也会给系统带来压力,同时也会对底层硬件产生负担。为了解决这个问题,我们可以采用几种策略。首先,介绍一种叫做批处理式生成式 AI 系统的方法。在这种情况下,我们希望创建由这些大语言模型生成的非常动态的填空句子。然后我们将它们存储在内容分发网络(CDN)上,并在全球范围内缓存。

2024-08-02 23:47:27 164

原创 『大模型笔记』LLM秘密:温度、Top-K和Top-P抽样技术解析!

总结一下,使用温度、Top-K和Top-P技术的随机采样为大语言模型生成输出提供了不同的选择。在视频的最后部分,我将讨论每种技术的优缺点,以便您更好地了解何时使用每种方法以及可能的限制。温度参数的优点包括增加模型的创造力,较高温度引入更多随机性,促进创造性和多样性输出,还可以防止模型变得过于确定性。然而,缺点是过高温度可能导致输出不连贯,因为模型更可能选择不太可能的单词,增加随机性可能导致文本缺乏上下文或意义。

2024-07-19 13:46:09 421

原创 『大模型笔记』什么是 AI 智能体?

为了解释这一点,我们必须看一看在生成式 AI 领域看到的各种转变。

2024-07-17 09:38:38 422 1

原创 『大模型笔记』GraphRAG:用于复杂数据发现的新工具现已在GitHub上发布

GraphRAG:用于复杂数据发现的新工具现已在GitHub上发布

2024-07-09 14:10:01 2110

原创 『大模型笔记』GraphRAG:利用复杂信息进行发现的新方法!

我们通过向两个系统提出以下问题来说明整个数据集的推理能力:查询:“数据中的前五大主题是什么?

2024-07-09 13:52:54 645

原创 『大模型笔记』你需要的不是智能体,而是一个适合 AI 的工作流

从上面的例子可以看出,真正要用好 AI,让 AI 发挥最大效能,核心是还是要基于你要解决的问题,重新设计一个适合 AI 的工作流,让 AI 在工作流中完成它最擅长的工作,至于是不是智能体,是不是大语言模型,是不是 AI 帮你决策,都不是最重要的。

2024-07-08 14:21:25 610

原创 『大模型笔记』为什么人工智能是不可预测的!

为什么人工智能是不可预测的!

2024-07-08 10:52:01 416

原创 『大模型笔记』《Pytorch实用教程》(第二版)

时隔5年,历时4年,耗时2年的《Pytorch实用教程》第二版完成了。在第一版的精华之上,增加了丰富详实的深度学习应用案例和推理部署框架,使本书更系统性的涵盖深度学习工程师所涉及的知识面。如人工智能技术发展一浪接一浪,《Pytorch实用教程》第二版不是结束,而是开始,开启新的技术、新的领域、新的篇章,希望未来能继续与大家一起在人工智能技术里学习、进步。

2024-07-07 13:53:28 382

原创 『Python学习笔记』Python运行设置PYTHONPATH环境变量!

Python运行设置PYTHONPATH环境变量!

2024-07-04 14:36:56 1217

原创 『大模型笔记』2024大模型AI工程师必备技能!

文章首先介绍了大语言模型(LLM)的基本概念,并提出了一个五层结构的框架来帮助理解 LLM 在不同应用中的使用方式。第一层是问答引擎(Q&A),即用户向 LLM 提问并获得答案。第二层是聊天机器人,它在 Q&A 的基础上增加了短期记忆,能够进行连续的对话交互。第三层是检索增强生成(RAG),它除了拥有 Q&A 和短期记忆外,还能够利用外部知识进行信息检索和生成回答。第四层是智能体(Agent),它将 LLM 与各种工具集成,能够执行具体的任务和操作。文章还讨论了函数调用(Function Calling)。

2024-07-04 09:21:50 260

原创 『大模型笔记』人工智能的过去六十年 — 以及接下来会发生什么!

人工智能的过去六十年 — 以及接下来会发生什么!

2024-07-02 17:12:39 81

原创 『大模型笔记』什么时候该用多智能体?是不是一定要用多智能体?

什么时候该用多智能体?是不是一定要用多智能体?

2024-07-02 16:13:06 456

原创 『大模型笔记』5 种人工智能公司(大模型领域)!

如果你没有时间,如果你想马上停止观看这个视频,那你需要知道的重点部分就是这个:什么是FACES框架?FACES框架实际上是反向开始的。F-A-C-E-S。在底层,我们有基础模型创新者(foundational model innovators)。这些人是构建基础模型的人。然后,我们有自适应微调者(adaptive fine tuners),他们在这些基础模型上进行构建。接着是便捷的API提供者和API包装器(convenient API providers and API wrappers)。

2024-06-20 10:01:18 163

原创 『大模型笔记』斯坦福大学教授李飞飞在2024年数据与人工智能峰会上的人工智能历史与未来

在五亿年前,视觉的出现不仅将黑暗的世界照亮,也开启了一个深远的进化过程,这是动物世界中智能的发展。人工智能在过去的十年中取得的惊人进步同样令人震惊。但是,真正的数字寒武纪大爆发只有在计算机和机器人都发展出我们所有人所拥有的空间智能时,才能实现其最大的可能性。现在是时候让我们的数字伙伴学会如何理解并与这个我们称之为家的三维空间进行互动,以及为我们大家创造许多新的世界去探索了。实现这个未来的道路并非平坦,需要我们共同努力,发展始终以人为核心的技术。

2024-06-19 14:54:09 166

原创 『大模型笔记』如何让小型语言模型发挥作用!

总结一下,我展示了我们如何在没有依赖极大规模预训练模型和许多其他规模化方法的情况下学习总结文档。这两篇论文背后的真正研究问题是如何学习抽象。因为现在的配方是让模型变得超级大。越大越好。但人类无法记住所有的上下文,例如一百万个tokens。没有人能记住这么多。你只是瞬间抽象掉我告诉你的所有东西,但仍然记得我刚才说的内容。这是我们尚未通过AI模型有效构建的人类智慧。我相信这是可能的。我们只是不够努力,因为我们被规模的魔力蒙蔽了眼睛。

2024-06-19 14:10:29 267

原创 『大模型笔记』Cohere的联合创始人Nick Frosst谈:AGI真的只是幻想吗?

AGI(通用人工智能)的立场技术应用和现实世界问题Cohere公司及其活动Command-R模型及其功能检索增强生成(RAG)创始团队的背景工具使用的演变哲学探讨建设日活动开发者指导数据获取和准备多语言支持数据科学与软件工程的角色模型的未来发展技术成熟度和基准测试开源工具包。

2024-06-17 11:32:08 102

从零开始构建AI智能体!

本网页主要介绍了如何从零开始构建一个基于大语言模型的 AI 智能体,包括智能体的工作原理、Python 代码实现以及如何使用工具调度来影响其环境。

2024-08-15

WizardLM:使大型预训练语言模型能够遵循复杂的指令

WizardLM:使大型预训练语言模型能够遵循复杂的指令

2024-08-14

2024大模型AI工程师必备技能

五个级别的大语言模型 (LLM)应用。可以将此视为一个框架,帮助你决定在哪些地方可以使用LLM。 关于LLM能做什么、不能做什么,有很多不同的误解。那么今天你在哪里使用LLM呢?因此,我决定整理这份材料,带你通过一个基于你使用LLM的扩展或深度的思维框架。你可以决定将LLM适用于哪个层面。首先我们来看一下我整理出的不同级别的LLM,然后我们会稍微扩展一下这个内容。我准备了两个不同的文档带你了解这些内容。这将帮助你了解今天LLM的使用情况以及你如何在自己的应用中使用LLM。

2024-07-03

5种人工智能公司(大模型领域)

讨论了很多人对AI公司存在的误解。许多人认为建立AI公司需要自行构建AI模型,但实际上并非如此。这段视频的目的是澄清这些误解,并解释如何在不同类型的AI公司中找到合适的角色。视频强调,成为一家成功的AI公司并不总是需要自己构建模型,而是要找到适合自身资源和能力的切入点。FACES框架是一个用于分解不同类型AI公司的工具。FACES代表五种不同的公司类型:基础模型创新者(Foundational Model Innovators)、自适应微调者(Adaptive Fine-Tuners)、便捷的API提供者(Convenient API Providers)、基础设施建设者(Essential Infrastructure Builders)、独立和集成的AI产品(Standalone and Integrated AI Products)。这个框架帮助理解各类AI公司在生态系统中的角色和重要性。

2024-06-21

Fast LLM Serving with vLLM and PagedAttention

LLMs 有望彻底改变我们在各行各业中使用 AI 的方式。然而,实际应用这些模型具有挑战性,即使在昂贵的硬件上也可能非常缓慢。为了解决这个问题,我们正在开发一个开源库 vLLM,用于快速 LLM 推理和服务。vLLM 利用我们新的注意力算法 PagedAttention,有效地管理注意力键值。装备了 PagedAttention 的 vLLM 实现了比 HuggingFace Transformers 高达 24 倍的吞吐量,而无需任何模型架构的改变。vLLM 由加州大学伯克利分校开发,并在过去三个月中部署于 Chatbot Arena 和 Vicuna Demo。在本次演讲中,我们将深入讨论 vLLM 的动机、特性和实现,并介绍我们的未来计划。

2024-05-27

Openai CEO奥特曼和Brad访谈(2024年4月17日),哪些公司将被 OpenAI 淘汰?

Sam Altman 是 OpenAI 的 CEO,这家公司致力于使通用人工智能(AGI)惠及全人类。OpenAI 是历史上扩张速度最快的公司之一,估值高达 900 亿美元,收入超过 20 亿美元。在 OpenAI 之前,Sam 曾担任 Y Combinator 的总裁和 CEO,并在 Airbnb、Stripe、Reddit、Pinterest、Asana 等公司做过天使投资。 在今天的节目中,Sam Altman 和 Brad Lightcap 将讨论: 合作伙伴关系:科技界最强大的二人组: 6 年前,25 人拒绝了 OpenAI CFO 的职位,是什么让 Brad 在 Sam 之前加入了 OpenAI?他看到了什么别人没看到的? Brad 认为 Sam 最大的独特优势是什么,这一点世界还未知晓?Sam 又认为 Brad 的最大优势是什么? Brad 和 Sam 如何共同决策?他们是如何平衡直接处理和委派的?最近他们有什么意见不合?又是如何解决的? OpenAI 接下来的 12 个月:瓶颈、计算力和商品化: 接下来的 12 个月,OpenAI 面临的主要瓶颈是什么?

2024-04-19

(Language Modeling)Introduction to N-grams

(Language Modeling)Introduction to N-grams

2024-03-20

【东方财富证券】从硬件、算法、应用角度看ChatGPT浪潮引领AIGC革新投资机遇

ChatGPT 对 AIGC 产业生态的硬件层、算法层和应用层带来革新。ChatGPT 全面激活深度学习和人工智能需求,根据 Precedence Research 预测 AI 市场规模有望 10 年 10 倍以上。GPT-3 每训练一次需要使用由 1 万个 V100GPU 训练 13 天。(GPT-3 披露单次训练需要3.114x10^23FLOPS 花费 460 万美元,等于单 V100GPU 运行 355 年) 生成式 AI 模型在硬件层依赖高性能芯片和云计算数据中心提供算力支持。CPU 领域如海光信息、海思半导体、龙芯中科、上海兆芯;GPU 领域例如景嘉微,海光信息等。FPGA 领域例如安路科技、复旦微电、紫光国微等;ASIC 芯片如寒武纪、澜起科技等;光模块领域如德科立、天孚通信、中际旭创;Chiplet 领域如兴森科技、长川科技、方邦股份等。云计算成为降低 AIGC 硬件成本突破口,设备商例如紫光股份、联想、中兴通讯、锐捷网络等:算力散热相关英维克、高澜股份:云计算如阿里巴巴、腾讯、奥飞数据、数据港等。 生成式 AI 模型在硬件层依赖高性能芯片和云计算数据中心提供算力支持。

2024-03-20

【钛媒体国际智库】中美AI大模型应用比较研究报告

康波周期是描述宏观经济增长与技术革命间内在关系的重要模型,第一次工业革命以来,人类已经完整经历了纺织和蒸汽机技术、钢铁和铁路、电气和重化工业、汽车和电子计算机四轮康波周期,目前处于信息技术周期的萧条阶段,AI驱动的第六轮康波周期一触即发。以ChatGPT为代表的Al大模型的诞生,意味着强人工智能的时代即将到来,AIGC正在成为引发生产力变革的引擎,为了抓住第六轮康波周期的机遇,更是在未来的科技竞争中占领先机,中美两国在大模型的布局上不遗余力,两国的竞争不仅仅体现在大型科技企业之间,更是在应用领域也展开了对决。

2024-03-20

【中国信通院2023】人工智能大模型赋能医疗健康产业白皮书

随着全球新一轮科技革命和产业变革深入发展,以人工智能(Artificial Intelligence,AI)为代表的数字技术加速演进,成为经济增长的核心驱动力。近年来,人工智能大规模预训练模型(以下简南称"大模型")在知识、数据、算法和算力等关键要素的共同推动下,呈现见爆发式增长,从自然语言处理逐步扩展、迁移到计算机视觉、多模态、科学计算等领域,增强了人工智能的泛化性、通用性,开启了人工上智能发展新范式。人工智能大模型有望成为未来新型基础设施,赋能干行百业新一轮增长,落地应用和价值实现成为大模型下一步发展方向。生命科学和医疗健康是大模型等AI技术最重要的应用领域之一,大模型可赋能生命科学研究和新药研发,促进医疗器械创新,提升医疗智能化水平。将大模型应用于医疗健康领域,推动医疗健康行业数字化转型升级,对满足人民群众健康需求和实现经济社会经录色、智能、可持续发展具有重要意义。

2024-03-20

【SuperCLUE团队】中文大模型基准测评2023年度报告

自2022年11月30日ChatGPT发布以来,AI大模型在全球范围内掀起了有史以来规模最大的人工智能浪潮。国内学术和产业界在过去一年也有了实质性的突破。大致可以分为三个阶段,即准备期(ChatGPT发布后国内产学研迅速形成大模型共识)、成长期(国内大模型数量和质量开始逐渐增长)、爆发期(各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势)。

2024-03-20

【中国信息通信研究】2023大模型落地应用案例集

本项目通过搭建高性能 GPU 计算集群、训练通用大语言模型、训练垂类大语言模型、搭建大语言模型微调平台、搭建大语言模型应用开放平台等核心模块,旨在打造大语言模型服务和应用平台,为大语言模型技术的研究和应用提供一个开放、可扩展、可协作的环境。这个平台除了通用大语言模型外,还提供大量共享的数据集、算法库、模型微调工具等资源供开发者使用,同时大语言模型应用开放平台提供一整套完整的大语言模型生态应用工具链,从而加速大语言模型的训练以及大语言模型生态应用的开发和使用过程。

2024-03-20

【中国信通院2022】人工智能AI框架发展白皮书

AI 助力当前经济社会步入智能经济时代。世界正在进入以新一代信息技术驱动发展的重塑时期,人工智能(AI,Artificial Intelligence) 作为其中重要的使能技术,对激活实体经济具有溢出带动性很强的 “头雁效应”,对构筑国家科技影响力具有举足轻重的意义。人工智能 成为了全球各国新的科技热点,人工智能基础设施建设也成为重要抓手与着力点。未来十年是全球发展数字经济、迈入智能经济社会的黄金发展期,着力发展人工智能基础设施,将为我国人工智能产业发展 壮大、数字经济蓬勃发展提供强大牵引力。 AI 框架是智能经济时代的操作系统。作为人工智能开发环节中的基础工具,AI 框架承担着 AI 技术生态中操作系统的角色,是 AI 学术创新与产业商业化的重要载体,助力人工智能由理论走入实践,快速进入了场景化应用时代,也是发展人工智能所必需的基础设施之 一。随着重要性的不断凸显,AI 框架已经成为了人工智能产业创新的焦点之一,引起了学术界、产业界的重视。 在此背景下,白皮书致力于厘清 AI 框架的概念内涵、演进历程、技术体系与作用意义,通过梳理总结当前 AI 框架发展现状,研判 AI 框架技术

2024-03-20

剑桥大学:2023State of AI Report

人工智能(AI)是一个多学科的科学和工程领域,其目标是创造智能机器。我们相信,在日益数字化、数据驱动的世界中,人工智能将成为技术进步的力量倍增器。 这是因为今天我们周围的一切,从文化到消费品,都是智能的产物。《人工智能现状报告》现已进入第六个年头。 将此报告视为我们所见过的最有趣的事情的汇编,其目标是引发有关人工智能现状及其对未来影响的知情对话。我们在报告中考虑了以下关键维度: 研究:技术突破及其能力。 行业:人工智能的商业应用领域及其业务影响。 政治:人工智能的监管、其经济影响以及不断演变的人工智能地缘政治。 安全:识别并减轻未来高性能人工智能系统可能给我们带来的灾难性风险。 预测:我们相信未来 12 个月会发生什么,以及 2022 年绩效评估,以保持我们的诚实。

2024-03-20

清华⼤学计算机系 知识⼯程实验室(KEG)唐杰《从千亿模型到ChatGPT的⼀点思考》

训练成本⾼昂:训练 1750 亿参数的 GPT-3 使⽤了上万块 V100,机时费⽤是 460万美元,总成本据悉达到 1200 万美元 ⼈⼒投⼊极⼤:⾕歌 PaLM 540B 的团队:前期准备 29 ⼈,训练过程 11 ⼈,整个作者列表 68 ⼈ 训练过程不稳定:容易出现训练不收敛现象

2024-03-20

AIGC算力时代系列报告-ChatGPT芯片算力研究框架

ChatGPT热潮席卷全球。ChatGPT (Chat Generative Pre-traineed Transformer)是由OpenAl于2022年12月推出的对话Al模型,一经面世便受到广泛关注,其2023年1月月活跃用户达到1亿,是史上月活用户增长最快的消费者应用。在问答模式的基础上ChatGPT可以进行推理、编写代码、文本创作等等,这样的特殊优势和用户体验使得应用场景流量大幅增加。

2024-03-20

CS324课程大模型中的Scaling Law(规模法则)课件

CS324课程大模型中的Scaling Law(规模法则)课件 Scaling Laws简单介绍就是:随着模型参数量大小、数据集大小和用于训练的浮点数计算量的增加,模型的性能会提高。并且为了获得最佳性能,所有三个因素必须同时放大。当不受其他两个因素的制约时,模型性能与每个单独的因素都有幂律关系。 对于Decoder-only的模型,计算量 C (FLOPs), 模型参数量 N, 数据大小 D(token数),三者满足:C ≈6ND。模型的计算量 C一定后,模型的性能即精度就基本确定。它的决策变量只有 N 和 D,跟模型的具体结构诸如层数、 深度、 attention头个数(宽度)基本无关。相关性非常小,性能(即test loss)在2%的区间内。

2024-03-20

清华大学新闻与传播学院发布的AIGC发展研究资料,2024年最新,200多页

聚焦AIGC产业发展现状及趋势,分技术篇、产业篇、评测篇、职业篇、风险篇、哲理篇、未来篇,是产业发展的概观性报告,也初步回应了突出的风险隐忧,旨在洞察行业的基础上,对AIGC发展趋势进行科学预测与展望,为社会各界应对AIGC领域的挑战提供了理论指导与实践建议。 报告80%内容由AI自动生成,聚焦AIGC的多模态发展、多学科影响、全方位应用以及前沿探索,融汇了与AIGC相关的产业实践经验、学术研究探讨与社会理念摸索,致力于向读者提供全面了解AIGC动态的指南,共同探寻人工智能和人类未来发展的和谐之道。

2024-03-20

图像处理透视变换(Python+Opencv)

透视变换(Perspective Transformation)是将图片投影到一个新的视平面(Viewing Plane),也称作投影映射(Projective Mapping)。 如果你想对图像进行校准,那么透视变换是非常有效的变换手段。透视变换的定义为将图像投影到一个新的视平面,通常也被称之为投影映射。

2023-02-10

张量分解_张量CP分解_张量Tucker分解_详细介绍!

张量内容的详细介绍,张量CP分解以及Tucker分解内容的详细讲解! 建议结合我的博客来学习:https://blog.csdn.net/abc13526222160/article/details/118255259?spm=1001.2014.3001.5502

2021-07-13

仿宋_GB2312.zip

仿宋_GB2312.zip

2021-04-27

楷体_GB2312.zip

Windows字体

2021-04-27

VNC-Viewer-6.20.113-Linux-x86.deb

VNC是虚拟网络控制台的缩写。它 是一款优秀的远程控制工具软件,由著名的 AT&T 的欧洲研究实验室开发的。VNC 是在基于 UNIX 和 Linux 操作系统的免费的开源软件,远程控制能力强大,高效实用,其性能可以和 Windows 和 MAC 中的任何远程控制软件媲美。 在 Linux 中,VNC 包括以下四个命令:vncserver,vncviewer,vncpasswd,和 vncconnect。大多数情况下用户只需要其中的两个命令:vncserver 和 vncviewer。

2020-06-29

VNC-Server-6.3.2-Linux-x64.deb

VNC是虚拟网络控制台的缩写。它 是一款优秀的远程控制工具软件,由著名的 AT&T 的欧洲研究实验室开发的。VNC 是在基于 UNIX 和 Linux 操作系统的免费的开源软件,远程控制能力强大,高效实用,其性能可以和 Windows 和 MAC 中的任何远程控制软件媲美。输入一个有效的密钥:5D7L8-ZQXSA-2L5D4-4UFB4-PWDLA 或77NVU-D9G5T-79ESS-V9Y6X-JMVGA

2020-06-29

cvpr_2020.zip

CVPR 2020 所有3D目标检测相关论文,总计21篇论文,感觉最大的特点是3D目标检测研究工作很多在工业界单位,可能是自动驾驶热带来的。

2020-06-15

BP期末论文算法word文档+代码

作为深度学习领域的破冰之作,BP神经网络重新燃起了人们对深度学习的热情.它解决了DNN中的隐层传递中的权重值的计算问题.那么,BP算法思想是什么?它又是如何实现的呢?这就是本文的研究内容.

2019-01-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除