『大模型笔记』主成分分析(PCA)解释:简化机器学习中的复杂数据!

主成分分析(PCA)解释:简化机器学习中的复杂数据

一. 主成分分析(PCA)解释:简化机器学习中的复杂数据!

在这里插入图片描述

主成分分析(Principal Component Analysis,简称PCA)通过 将大型数据集中的维度减少到能够保留大部分原始信息的主成分,从而减少数据的维度

让我给你举个例子,说明为什么这很重要。假设在一个风险管理的场景中,我们想要了解哪些贷款彼此相似,以便理解哪些类型的贷款通常会还清,哪些类型的贷款风险较高。请看这张表,显示了六笔贷款的数据。这些贷款包含多个维度,例如贷款金额、申请人的信用评分等。虽然这里只显示了四个维度,但贷款实际上包含更多的维度。例如,借款人的年龄和收入债务比也是重要维度。

PCA是一种找出最重要维度或主成分的方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI大模型前沿研究

感谢您的打赏,我会继续努力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值