- 博客(3)
- 资源 (1)
- 收藏
- 关注
原创 简单理解支持向量机SVM的方法
一.简介 SVM主要针对小样本数据进行学习、分类和预测(有时也叫回归)的一种方法,能解决神经网络不能解决的过学习问题,而且有很好的泛化能力。SVM是一种有监督的学习模型,在处理二分类问题上可以说是现有算法中的最好的一种。很多正统的算法都是从VC维理论和结构风险最小原理出发,从而引出SVM,但是对于统计理论基础不是很好的人来说理解起来比较困难,本文从线性可分情况开始,利用几何知识和
2015-05-25 13:22:51 7149
原创 java学习笔记(一)win7下java开发环境配置和Hello Java
配置java开发环 境 一. 下载jdk安装程序,下载地址:http://www.oracle.com/technetwork/cn/java/javase/downloads/jdk8-downloads-2133151-zhs.html,下载完成后运行安装程序,跟随安装向导选择自己想要安装的目录,安装完成后如下图所示,但是到这里还没有结束,我们还需要为java配置环境变量
2015-05-05 17:35:36 367
转载 支持向量机SVM学习
转自http://www.cnblogs.com/jerrylead 1 简介 支持向量机基本上是最好的有监督学习算法了。最开始接触SVM是去年暑假的时候,老师要求交《统计学习理论》的报告,那时去网上下了一份入门教程,里面讲的很通俗,当时只是大致了解了一些相关概念。这次斯坦福提供的学习材料,让我重新学习了一些SVM知识。我看很多正统的讲法都是从VC 维理论和结构风险最小原理出发,然后引出SVM
2015-05-05 13:07:33 357
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人